1,408 research outputs found

    Monitoramento ambiental e agropecuário do território de Frederico Westphalen (1998 - 2007).

    Get PDF
    bitstream/item/34754/1/boletim-129.pd

    Monitoramento Sócio Ambiental da Bacia da Lagoa Mirim (1997 - 2006).

    Get PDF
    bitstream/CPACT-2010/12323/1/documento-267.pd

    Disentanglement of the electronic and lattice parts of the order parameter in a 1D Charge Density Wave system probed by femtosecond spectroscopy

    Full text link
    We report on the high resolution studies of the temperature (T) dependence of the q=0 phonon spectrum in the quasi one-dimensional charge density wave (CDW) compound K0.3MoO3 utilizing time-resolved optical spectroscopy. Numerous modes that appear below Tc show pronounced T-dependences of their amplitudes, frequencies and dampings. Utilizing the time-dependent Ginzburg-Landau theory we show that these modes result from linear coupling of the electronic part of the order parameter to the 2kF phonons, while the (electronic) CDW amplitude mode is overdamped.Comment: 4 pages, 3 figures + supplementary material, accepted for publication in Phys. Rev. Let

    Zoneamento Edáfico da Cana-de-açúcar no Polo Petroquímico de Triunfo.

    Get PDF
    bitstream/item/105243/1/Comunicado-295.pd

    Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement

    Get PDF
    Most motion correction methods work by aligning a set of volumes together, or to a volume that represents a reference location. These are based on an implicit assumption that the subject remains motionless during the several seconds it takes to acquire all slices in a volume, and that any movement occurs in the brief moment between acquiring the last slice of one volume and the first slice of the next. This is clearly an approximation that can be more or less good depending on how long it takes to acquire one volume and in how rapidly the subject moves. In this paper we present a method that increases the temporal resolution of the motion correction by modelling movement as a piecewise continous function over time. This intra-volume movement correction is implemented within a previously presented framework that simultaneously estimates distortions, movement and movement-induced signal dropout. We validate the method on highly realistic simulated data containing all of these effects. It is demonstrated that we can estimate the true movement with high accuracy, and that scalar parameters derived from the data, such as fractional anisotropy, are estimated with greater fidelity when data has been corrected for intra-volume movement. Importantly, we also show that the difference in fidelity between data affected by different amounts of movement is much reduced when taking intra-volume movement into account. Additional validation was performed on data from a healthy volunteer scanned when lying still and when performing deliberate movements. We show an increased correspondence between the “still” and the “movement” data when the latter is corrected for intra-volume movement. Finally we demonstrate a big reduction in the telltale signs of intra-volume movement in data acquired on elderly subjects
    corecore