90 research outputs found
Evidence for Spatial Separation of Galactic Dust Components
We present an implementation of a Bayesian mixture model using Hamiltonian
Monte Carlo (HMC) techniques to search for spatial separation of Galactic dust
components. Utilizing intensity measurements from \Planck High Frequency
Instrument (HFI), we apply this model to high-latitude Galactic dust emission.
Our analysis reveals a strong preference for a spatially-varying two-population
dust model in intensity, with each population being well characterized by a
single-component dust spectral-energy distribution (SED). While no spatial
information is built into the likelihood, our investigation unveils spatially
coherent structures with high significance, pointing to a physical origin for
the observed spatial separation. These results are robust to our choice of
likelihood and of input data. Furthermore, they are favored over a
single-component dust model by Bayesian evidence calculations.
Incorporating \IRAS 100\, to constrain the Wein-side of the blackbody
function, we find the dust populations differ at the level on the
spectral index () vs. temperature plane. The presence of a
multi-population dust has implications for component separation techniques
frequently employed in the recovery of the Cosmic Microwave Background.Comment: 16 pages, 8 figures. Submitted to Ap
Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER
We describe 280 GHz bolometric detector arrays that instrument the
balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to
measure the large-scale B-mode polarization of the cosmic microwave background
in search of the cosmic-inflation, gravitational-wave signature. 280 GHz
channels aid this science goal by constraining the level of B-mode
contamination from galactic dust emission. We present the focal plane unit
design, which consists of a 1616 array of conical, corrugated feedhorns
coupled to a monolithic detector array fabricated on a 150 mm diameter silicon
wafer. Detector arrays are capable of polarimetric sensing via waveguide
probe-coupling to a multiplexed array of transition-edge-sensor (TES)
bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which
in total contains 765 spatial pixels and 1,530 polarization sensitive
bolometers. By fabrication and measurement of single feedhorns, we demonstrate
14.7 FHWM Gaussian-shaped beams with 1% ellipticity in a 30%
fractional bandwidth centered at 280 GHz. We present electromagnetic
simulations of the detection circuit, which show 94% band-averaged,
single-polarization coupling efficiency, 3% reflection and 3% radiative loss.
Lastly, we demonstrate a low thermal conductance bolometer, which is
well-described by a simple TES model and exhibits an electrical noise
equivalent power (NEP) = 2.6 10 W/,
consistent with the phonon noise prediction.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 201
End-to-End Modeling of the TDM Readout System for CMB-S4
The CMB-S4 experiment is developing next-generation ground-based microwave
telescopes to observe the Cosmic Microwave Background with unprecedented
sensitivity. This will require an order of magnitude increase in the 100 mK
detector count, which in turn increases the demands on the readout system. The
CMB-S4 readout will use time division multiplexing (TDM), taking advantage of
faster switches and amplifiers in order to achieve an increased multiplexing
factor. To facilitate the design of the new readout system, we have developed a
model that predicts the bandwidth and noise performance of this circuity and
its interconnections. This is then used to set requirements on individual
components in order to meet the performance necessary for the full system. We
present an overview of this model and compare the model results to the
performance of both legacy and prototype readout hardware.Comment: This manuscript was submitted to the Journal of Low Temperature
Physics as part of the special issue "LTD20", supporting the conference
contribution RP-00
A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument
We describe the cryogenic half-wave plate rotation mechanisms built for and
used in Spider, a polarization-sensitive balloon-borne telescope array that
observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a
stratospheric balloon flight from Antarctica in January 2015. The mechanisms
operate at liquid helium temperature in flight. A three-point contact design
keeps the mechanical bearings relatively small but allows for a large (305 mm)
diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows
for precise positioning and prevents undesired rotation when the motors are
depowered. A custom-built optical encoder system monitors the bearing angle to
an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider
during its successful 16 day flight.Comment: 11 pages, 7 figures, Published in Review of Scientific Instruments.
v2 includes reviewer changes and longer literature revie
Modeling and characterization of the SPIDER half-wave plate
Spider is a balloon-borne array of six telescopes that will observe the
Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the
instrument will make a polarization map of the CMB with approximately one-half
degree resolution at 145 GHz. Polarization modulation is achieved via a
cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have
measured millimeter-wave transmission spectra of the sapphire at room and
cryogenic temperatures. The spectra are consistent with our physical optics
model, and the data gives excellent measurements of the indices of A-cut
sapphire. We have also taken preliminary spectra of the integrated HWP, optical
system, and detectors in the prototype Spider receiver. We calculate the
variation in response of the HWP between observing the CMB and foreground
spectra, and estimate that it should not limit the Spider constraints on
inflation
CMB-S4 Science Book, First Edition
This book lays out the scientific goals to be addressed by the
next-generation ground-based cosmic microwave background experiment, CMB-S4,
envisioned to consist of dedicated telescopes at the South Pole, the high
Chilean Atacama plateau and possibly a northern hemisphere site, all equipped
with new superconducting cameras. CMB-S4 will dramatically advance cosmological
studies by crossing critical thresholds in the search for the B-mode
polarization signature of primordial gravitational waves, in the determination
of the number and masses of the neutrinos, in the search for evidence of new
light relics, in constraining the nature of dark energy, and in testing general
relativity on large scales
Pointing control for the SPIDER balloon-borne telescope
We present the technology and control methods developed for the pointing
system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed
to detect the imprint of primordial gravitational waves in the polarization of
the Cosmic Microwave Background radiation. We describe the two main components
of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A
13 kHz PI control loop runs on a digital signal processor, with feedback from
fibre optic rate gyroscopes. This system can control azimuthal speed with <
0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven
linear actuators to rotate the cryostat, which houses the optical instruments,
relative to the outer frame. With the velocity in each axis controlled in this
way, higher-level control loops on the onboard flight computers can implement
the pointing and scanning observation modes required for the experiment. We
have accomplished the non-trivial task of scanning a 5000 lb payload
sinusoidally in azimuth at a peak acceleration of 0.8 deg/s, and a peak
speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing
control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne
Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume
914
- …