10,187 research outputs found
Phosphorus retention capacity in red ferralitic soil
In this study the main physical-chemical characteristics of red ferralitic soil to use as substrate in subsurface wetlands was determined. The P-removal was evaluated in a short-term isotherm batch experiment and in a column percolation experiment. The acid characteristic and high content of iron minerals in the red ferralitic soil facilitated the phosphorus removal. Also the sorption isotherms at two different temperatures were obtained. The results showed that the sorption capacity increases with an increase in solution temperature from 25 to 35 degrees C. The experimental data were fitted to Langmuir and Freundlich models, having a better fit to the Freundlich isotherms. The maximum P-sorption capacities estimated using the Langmuir isotherm were 0.96 and 1.13 g/kg at 25 and 35 degrees C respectively. Moreover a column experiment was carried out at two different flows. Sequential extractions of the phosphorus-saturated soil indicated that phosphorus is mainly bound with iron or aluminum minerals. The results have demonstrated a good potential for red ferralitic soil for phosphorus removal from urban wastewater
Quantum preparation uncertainty and lack of information
The quantum uncertainty principle famously predicts that there exist
measurements that are inherently incompatible, in the sense that their outcomes
cannot be predicted simultaneously. In contrast, no such uncertainty exists in
the classical domain, where all uncertainty results from ignorance about the
exact state of the physical system. Here, we critically examine the concept of
preparation uncertainty and ask whether similarly in the quantum regime, some
of the uncertainty that we observe can actually also be understood as a lack of
information (LOI), albeit a lack of quantum information. We answer this
question affirmatively by showing that for the well known measurements employed
in BB84 quantum key distribution, the amount of uncertainty can indeed be
related to the amount of available information about additional registers
determining the choice of the measurement. We proceed to show that also for
other measurements the amount of uncertainty is in part connected to a LOI.
Finally, we discuss the conceptual implications of our observation to the
security of cryptographic protocols that make use of BB84 states.Comment: 7+15 pages, 4 figures. v2: expanded "Discussion" section, "Methods"
section moved before "Results" section, published versio
Spin injection and spin accumulation in permalloy-copper mesoscopic spin valves
We study the electrical injection and detection of spin currents in a lateral
spin valve device, using permalloy (Py) as ferromagnetic injecting and
detecting electrodes and copper (Cu) as non-magnetic metal. Our multi-terminal
geometry allows us to experimentally distinguish different magneto resistance
signals, being 1) the spin valve effect, 2) the anomalous magneto resistance
(AMR) effect and 3) Hall effects. We find that the AMR contribution of the Py
contacts can be much bigger than the amplitude of the spin valve effect, making
it impossible to observe the spin valve effect in a 'conventional' measurement
geometry. However, these 'contact' magneto resistance signals can be used to
monitor the magnetization reversal process, making it possible to determine the
magnetic switching fields of the Py contacts of the spin valve device. In a
'non local' spin valve measurement we are able to completely isolate the spin
valve signal and observe clear spin accumulation signals at T=4.2 K as well as
at room temperature. We obtain spin diffusion lengths in copper of 1 micrometer
and 350 nm at T=4.2 K and room temperature respectively.Comment: 8 pages (incl. figures), 7 figures, RevTex, conferenc
Analytical Model of Modified Traffic Control in an ATM Computer Network
The ABR class of ATM computer networks uses feedback information that is generated by net switches and destination and is sent back to a source of data to control the net load. A modification of the standard traffic management of the ATM network is presented, based on the idea of using RM cells to inform the source about congestion. An analytical model of a net switch is designed and mathematical relations are presented. The probability of queueing is considered. The analytical model of the switch was constructed for the purpose of analysing the network behaviour. It is used for investigating of cells passing through the network. We describe the model below. The submitted analytical results show that this method reduces congestion and improves throughput
Steric engineering of metal-halide perovskites with tunable optical band gaps
Owing to their high energy-conversion efficiency and inexpensive fabrication
routes, solar cells based on metal-organic halide perovskites have rapidly
gained prominence as a disruptive technology. An attractive feature of
perovskite absorbers is the possibility of tailoring their properties by
changing the elemental composition through the chemical precursors. In this
context, rational in silico design represents a powerful tool for mapping the
vast materials landscape and accelerating discovery. Here we show that the
optical band gap of metal-halide perovskites, a key design parameter for solar
cells, strongly correlates with a simple structural feature, the largest
metal-halide-metal bond angle. Using this descriptor we suggest continuous
tunability of the optical gap from the mid-infrared to the visible. Precise
band gap engineering is achieved by controlling the bond angles through the
steric size of the molecular cation. Based on these design principles we
predict novel low-gap perovskites for optimum photovoltaic efficiency, and we
demonstrate the concept of band gap modulation by synthesising and
characterising novel mixed-cation perovskites.Comment: This manuscript was submitted for publication on March 6th, 2014.
Many of the results presented in this manuscript were presented at the
International Conference on Solution processed Semiconductor Solar Cells,
held in Oxford, UK, on 10-12 September 2014. The manuscript is 37 pages long
and contains 8 figure
Separating the classical and quantum information via quantum cloning
An application of quantum cloning to optimally interface a quantum system
with a classical observer is presented, in particular we describe a procedure
to perform a minimal disturbance measurement on a single qubit by adopting a
1->2 cloning machine followed by a generalized measurement on a single clone
and the anti-clone or on the two clones. Such scheme has been applied to
enhance the transmission fidelity over a lossy quantum channel.Comment: 4 pages, 2figure
Dynamic resource management in SDN-based virtualized networks
Network virtualization allows for an abstraction between user and physical resources by letting a given physical infrastructure to be shared by multiple service providers. However, network virtualization presents some challenges, such as, efficient resource management, fast provisioning and scalability. By separating a network's control logic from the underlying routers and switches, software defined networking (SDN) promises an unprecedented simplification in network programmability, management and innovation by service providers, and hence, its control model presents itself as a candidate solution to the challenges in network virtualization. In this paper, we use the SDN control plane to efficiently manage resources in virtualized networks by dynamically adjusting the virtual network (VN) to substrate network (SN) mappings based on network status. We extend an SDN controller to monitor the resource utilisation of VNs, as well as the average loading of SN links and switches, and use this information to proactively add or remove flow rules from the switches. Simulations show that, compared with three state-of-art approaches, our proposal improves the VN acceptance ratio by about 40% and reduces VN resource costs by over 10%
- …