188 research outputs found

    Microshower structure of the meteor complex

    Get PDF
    Meteor radar observations of ionized trails in the Earth's atmosphere provide observations that do not depend on weather conditions and time of day and provide good statistics for analysis. Further development in the new quasitomographic analysis of the goniometric data of the Kazan meteoric radar has revealed a number of very weak meteoric streams with rates of more than 5-6 meteors per day. In addition to the known large meteor showers, we have found up to as many as 1000 small showers per month that we have named microshowers. We shall operationally define a microshower as the minimal meteoric stream which can be detected with the Kazan meteoric radar while quasitomographic procedures of processing interferometer data are used. © Springer Science+Business Media, Inc. 2005

    Rising of global energy economy by modernization of world monetary system

    Full text link
    Description of major weaknesses of modern monetary system and their influence at energy economy, propositions of solving this problems.В работе рассмотрены основные минусы современной денежной системы и их влияние на экономию энергии, предложены идеи их устранения

    Associations of meteor microshowers or as the Kazan radar "SEES" radiants on northern celestial hemisphere

    Get PDF
    The discrete quasitomographic method of the analysis of the interferometric data of meteor radar gives us the possibility of measuring coordinates and velocities of very weak meteor showers with a 2 × 2 square degree resolution on the celestial sphere. The minimal rate of the meteors in each microstream is five meteors per day. At such sensitivity, basic distinctions between irregularities of the sporadic background and meteor streams vanish. More than 1000 of the detected microshowers per month are associated with a combination of (a) the large known meteor showers, (b) the weaker known meteor showers and (c) till now unknown associations of microshowers. All microshowers regardless of association have the identical velocities, limited areas of radiation and near simultaneity of their acting dates. The results are compiled as maps of radiant distribution and average velocities of microstreams for different months. From these it is possible to see how the microshower activity for various discrete sites on the celestial sphere correlate with the behavior of the well-known meteor streams and thus to infer the orbital properties of the different microstream configurations. © Springer Science+Business Media, Inc. 2005

    Orbital structure of the meteor complex according to radar observations in Kazan. 1. Apparent distributions of aphelia

    Get PDF
    The results of an analysis of the orbital structure of the meteor complex accessible for radar observations at northern midlatitudes are reported. Experimentally, the study is based on the long-term monitoring of the influx of meteor matter into the Earth's atmosphere performed with the meteor radar of Kazan State University starting from 1986. The study uses a discrete quasi-tomographic method to measure the radiants and velocities of meteor showers based on goniometric data of the meteor radar and diffraction measurements of meteor velocities. The discretization of the detection environment-in particular, in terms of velocity-is shown to result in no substantial loss of measurement accuracy. The error of the measured velocity of the shower does not exceed 1.5 km/s for a standard deviation of a single velocity measurement equal to 3 km/s. Microshower representation is used with microshowers either representing the correlated part of the sporadic complex or being partial streams of major and minor showers, or fragments of the dust environment of minor bodies passing by Earth or falling onto it. The data of measurements made over the entire annual cycle are used to construct combined maps of the distribution of the observed 2263 microshowers (a total of 22 604 orbits) by their inclination, aphelion distance, and longitudes of the ascending nodes of their orbits. The observing conditions are shown to have a significant effect on the parameters of the distribution of aphelion distances for different months, and the corresponding distributions for prograde and retrograde orbits are shown to differ fundamentally. A specific feature of such distribution maps is that they allow uniform representation of both meteor showers and irregularities of the sporadic complex. © 2008 MAIK Nauka

    Experimental study of direct photon emission in K- --> pi- pi0 gamma decay using ISTRA+ detector

    Full text link
    The branching ratio in the charged-pion kinetic energy region of 55 to 90 MeV for the direct photon emission in the K- --> pi- pi0 gamma decay has been measured using in-flight decays detected with the ISTRA+ setup operating in the 25 GeV/c negative secondary beam of the U-70 PS. The value Br(DE)=[0.37+-0.39(stat)+-0.10(syst)]*10^(-5) obtained from the analysis of 930 completely reconstructed events is consistent with the average value of two stopped-kaon experiments, but it differs by 2.5 standard deviations from the average value of three in-flight-kaon experiments. The result is also compared with recent theoretical predictions.Comment: 13 pages, 8 figure

    Measurement of the K+μ+νμγK^+\rightarrow{\mu^+}{\nu_{\mu}}{\gamma} decay form factors in the OKA experiment

    Full text link
    A precise measurement of the vector and axial-vector form factors difference FVFAF_V-F_A in the K+μ+νμγK^+\rightarrow{\mu^+}{\nu_{\mu}}{\gamma} decay is presented. About 95K events of K+μ+νμγK^+\rightarrow{\mu^+}{\nu_{\mu}}{\gamma} are selected in the OKA experiment. The result is FVFA=0.134±0.021(stat)±0.027(syst)F_V-F_A=0.134\pm0.021(stat)\pm0.027(syst). Both errors are smaller than in the previous FVFAF_V-F_A measurements.Comment: 9 pages, 8 figure
    corecore