58 research outputs found

    Adaptive defuzzification for fuzzy systems modeling

    Get PDF
    We propose a new parameterized method for the defuzzification process based on the simple M-SLIDE transformation. We develop a computationally efficient algorithm for learning the relevant parameter as well as providing a computationally simple scheme for doing the defuzzification step in the fuzzy logic controllers. The M-SLIDE method results in a particularly simple linear form of the algorithm for learning the parameter which can be used both off- and on-line

    Experience-Based Evolutionary Algorithms for Expensive Optimization

    Full text link
    Optimization algorithms are very different from human optimizers. A human being would gain more experiences through problem-solving, which helps her/him in solving a new unseen problem. Yet an optimization algorithm never gains any experiences by solving more problems. In recent years, efforts have been made towards endowing optimization algorithms with some abilities of experience learning, which is regarded as experience-based optimization. In this paper, we argue that hard optimization problems could be tackled efficiently by making better use of experiences gained in related problems. We demonstrate our ideas in the context of expensive optimization, where we aim to find a near-optimal solution to an expensive optimization problem with as few fitness evaluations as possible. To achieve this, we propose an experience-based surrogate-assisted evolutionary algorithm (SAEA) framework to enhance the optimization efficiency of expensive problems, where experiences are gained across related expensive tasks via a novel meta-learning method. These experiences serve as the task-independent parameters of a deep kernel learning surrogate, then the solutions sampled from the target task are used to adapt task-specific parameters for the surrogate. With the help of experience learning, competitive regression-based surrogates can be initialized using only 1dd solutions from the target task (dd is the dimension of the decision space). Our experimental results on expensive multi-objective and constrained optimization problems demonstrate that experiences gained from related tasks are beneficial for the saving of evaluation budgets on the target problem.Comment: 19 pages, 5 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Game Projection and Robustness for Game-Theoretic Autonomous Driving

    Full text link
    Game-theoretic approaches are envisioned to bring human-like reasoning skills and decision-making processes for autonomous vehicles (AVs). However, challenges including game complexity and incomplete information still remain to be addressed before they can be sufficiently practical for real-world use. Game complexity refers to the difficulties of solving a multi-player game, which include solution existence, algorithm convergence, and scalability. To address these difficulties, a potential game based framework was developed in our recent work. However, conditions on cost function design need to be enforced to make the game a potential game. This paper relaxes the conditions and makes the potential game approach applicable to more general scenarios, even including the ones that cannot be molded as a potential game. Incomplete information refers to the ego vehicle's lack of knowledge of other traffic agents' cost functions. Cost function deviations between the ego vehicle estimated/learned other agents' cost functions and their actual ones are often inevitable. This motivates us to study the robustness of a game-theoretic solution. This paper defines the robustness margin of a game solution as the maximum magnitude of cost function deviations that can be accommodated in a game without changing the optimality of the game solution. With this definition, closed-form robustness margins are derived. Numerical studies using highway lane-changing scenarios are reported

    Safe and Human-Like Autonomous Driving: A Predictor-Corrector Potential Game Approach

    Full text link
    This paper proposes a novel decision-making framework for autonomous vehicles (AVs), called predictor-corrector potential game (PCPG), composed of a Predictor and a Corrector. To enable human-like reasoning and characterize agent interactions, a receding-horizon multi-player game is formulated. To address the challenges caused by the complexity in solving a multi-player game and by the requirement of real-time operation, a potential game (PG) based decision-making framework is developed. In the PG Predictor, the agent cost functions are heuristically predefined. We acknowledge that the behaviors of other traffic agents, e.g., human-driven vehicles and pedestrians, may not necessarily be consistent with the predefined cost functions. To address this issue, a best response-based PG Corrector is designed. In the Corrector, the action deviation between the ego vehicle prediction and the surrounding agent actual behaviors are measured and are fed back to the ego vehicle decision-making, to correct the prediction errors caused by the inaccurate predefined cost functions and to improve the ego vehicle strategies. Distinguished from most existing game-theoretic approaches, this PCPG 1) deals with multi-player games and guarantees the existence of a pure-strategy Nash equilibrium (PSNE), convergence of the PSNE seeking algorithm, and global optimality of the derived PSNE when multiple PSNE exist; 2) is computationally scalable in a multi-agent scenario; 3) guarantees the ego vehicle safety under certain conditions; and 4) approximates the actual PSNE of the system despite the unknown cost functions of others. Comparative studies between the PG, the PCPG, and the control barrier function (CBF) based approaches are conducted in diverse traffic scenarios, including oncoming traffic scenario and multi-vehicle intersection-crossing scenario

    Safe Control and Learning Using Generalized Action Governor

    Full text link
    This paper introduces the Generalized Action Governor, which is a supervisory scheme for augmenting a nominal closed-loop system with the capability of strictly handling constraints. After presenting its theory for general systems and introducing tailored design approaches for linear and discrete systems, we discuss its application to safe online learning, which aims to safely evolve control parameters using real-time data to improve performance for uncertain systems. In particular, we propose two safe learning algorithms based on integration of reinforcement learning/data-driven Koopman operator-based control with the generalized action governor. The developments are illustrated with a numerical example.Comment: 10 pages, 4 figure

    Targeted collapse regularized autoencoder for anomaly detection: black hole at the center

    Full text link
    Autoencoders have been extensively used in the development of recent anomaly detection techniques. The premise of their application is based on the notion that after training the autoencoder on normal training data, anomalous inputs will exhibit a significant reconstruction error. Consequently, this enables a clear differentiation between normal and anomalous samples. In practice, however, it is observed that autoencoders can generalize beyond the normal class and achieve a small reconstruction error on some of the anomalous samples. To improve the performance, various techniques propose additional components and more sophisticated training procedures. In this work, we propose a remarkably straightforward alternative: instead of adding neural network components, involved computations, and cumbersome training, we complement the reconstruction loss with a computationally light term that regulates the norm of representations in the latent space. The simplicity of our approach minimizes the requirement for hyperparameter tuning and customization for new applications which, paired with its permissive data modality constraint, enhances the potential for successful adoption across a broad range of applications. We test the method on various visual and tabular benchmarks and demonstrate that the technique matches and frequently outperforms alternatives. We also provide a theoretical analysis and numerical simulations that help demonstrate the underlying process that unfolds during training and how it can help with anomaly detection. This mitigates the black-box nature of autoencoder-based anomaly detection algorithms and offers an avenue for further investigation of advantages, fail cases, and potential new directions.Comment: 16 pages, 4 figures, 4 table
    corecore