10 research outputs found

    Recommendations for a ‘Wellbeing Curriculum’ to Mitigate Undergraduate Psychological Distress Associated with Lack of Careers Confidence and Poor University Engagement

    Get PDF
    To foster a ‘wellbeing curriculum’ in a climate with an increasingly competitive graduate jobs market, we believe it is critical to support undergraduate career development and to develop positive peer and educator relationships, particularly for non vocational degree programs. However, these relationships between undergraduate wellbeing and their career development or peer/educator relationships have not been specifically examined. This study used a mixed methods approach to examine if poor career development or university engagement (quality of relationships with peers or educators, use of the university careers and counselling services, time studying) were associated with psychological distress for students in non vocational degree programs. Undergraduates (biomedical science; n=1100) from five Australian universities participated in a survey to investigate relationships between psychological distress, as determined by their responses to the Depression, Anxiety and Stress Scales, and their career development or university engagement. Almost half of the students lacked confidence in their ‘future employment and job prospects’. Students’ psychological distress was significantly correlated with lack of confidence with their career development, poor relationships with their peers and educators and little use of the counselling service. Further exploration of these factors in student focus groups highlighted stress associated with academic competition between students and a critical need for undergraduate career development, especially industry placements. We provide pivotal recommendations to promote undergraduate and educator wellbeing, by developing a ‘wellbeing curriculum’ that supports career development and positive relationships between students and their peers and educators, particularly vital for non vocational degrees

    Stimulation of Activin A/Nodal signaling is insufficient to induce definitive endoderm formation of cord blood-derived unrestricted somatic stem cells

    Get PDF
    Introduction: Unrestricted somatic stem cells (USSC) derived from umbilical cord blood are an attractive alternative to human embryonic stem cells (hESC) for cellular therapy. USSC are capable of forming cells representative of all three germ line layers. The aim of this study was to determine the potential of USSC to form definitive endoderm following induction with Activin A, a protein known to specify definitive endoderm formation of hESC. Methods: USSC were cultured for (1) three days with or without 100 ng/ml Activin A in either serum-free, low-serum or serum-containing media, (2) three days with or without 100 ng/ml Activin A in combination with 10 ng/ml FGF4 in pre-induction medium, or (3) four days with or without small molecules Induce Definitive Endoderm (IDE1, 100 nM; IDE2, 200 nM) in serum-free media. Formation of definitive endoderm was assessed using RT-PCR for gene markers of endoderm (Sox17, FOXA2 and TTF1) and lung epithelium (surfactant protein C; SPC) and cystic fibrosis transmembrane conductance regulator; CFTR). The differentiation capacity of Activin A treated USSC was also assessed. Results: Activin A or IDE1/2 induced formation of Sox17+ definitive endoderm from hESC but not from USSC. Activin A treated USSC retained their capacity to form cells of the ectoderm (nerve), mesoderm (bone) and endoderm (lung). Activin A in combination with FGF4 did not induce formation of Sox17+ definitive endoderm from USSC. USSC express both Activin A receptor subunits at the mRNA and protein level, indicating that these cells are capable of binding Activin A. Conclusions: Stimulation of the Nodal signaling pathway with Activin A or IDE1/2 is insufficient to induce definitive endoderm formation from USSC, indicating that USSC differ in their stem cell potential from hESC

    Impact of sustained transforming growth factor-β receptor inhibition on chromatin accessibility and gene expression in cultured human endometrial MSC

    Get PDF
    Endometrial mesenchymal stem cells (eMSC) drive the extraordinary regenerative capacity of the human endometrium. Clinical application of eMSC for therapeutic purposes is hampered by spontaneous differentiation and cellular senescence upon large-scale expansion in vitro. A83-01, a selective transforming growth factor-β receptor (TGFβ-R) inhibitor, promotes expansion of eMSC in culture by blocking differentiation and senescence, but the underlying mechanisms are incompletely understood. In this study, we combined RNA-seq and ATAC-seq to study the impact of sustained TGFβ-R inhibition on gene expression and chromatin architecture of eMSC. Treatment of primary eMSC with A83-01 for 5 weeks resulted in differential expression of 1,463 genes. Gene ontology analysis showed enrichment of genes implicated in cell growth whereas extracellular matrix genes and genes involved in cell fate commitment were downregulated. ATAC-seq analysis demonstrated that sustained TGFβ-R inhibition results in opening and closure of 3,555 and 2,412 chromatin loci, respectively. Motif analysis revealed marked enrichment of retinoic acid receptor (RAR) binding sites, which was paralleled by the induction of RARB, encoding retinoic acid receptor beta (RARβ). Selective RARβ inhibition attenuated proliferation and clonogenicity of A83-01 treated eMSC. Taken together, our study provides new insights into the gene networks and genome-wide chromatin changes that underpin maintenance of an undifferentiated phenotype of eMSC in prolonged culture

    Comparison of Organoids from Menstrual Fluid and Hormone-Treated Endometrium: Novel Tools for Gynecological Research

    No full text
    Endometrial organoids (EMO) are an important tool for gynecological research but have been limited by generation from (1) invasively acquired tissues and thus advanced disease states and (2) from women who are not taking hormones, thus excluding 50% of the female reproductive-aged population. We sought to overcome these limitations by generating organoids from (1) menstrual fluid (MF; MFO) using a method that enables the concurrent isolation of menstrual fluid supernatant, stromal cells, and leukocytes and (2) from biopsies and hysterectomy samples from women taking hormonal medication (EMO-H). MF was collected in a menstrual cup for 4–6 h on day 2 of menstruation. Biopsies and hysterectomies were obtained during laparoscopic surgery. Organoids were generated from all sample types, with MFO and EMO-H showing similar cell proliferation rates, proportion and localization of the endometrial basalis epithelial marker, Stage Specific Embryonic Antigen-1 (SSEA-1), and gene expression profiles. Organoids from different disease states showed the moderate clustering of epithelial secretory and androgen receptor signaling genes. Thus, MFO and EMO-H are novel organoids that share similar features to EMO but with the advantage of (1) MFO being obtained non-invasively and (2) EMO-H being obtained from 50% of the women who are not currently being studied through standard methods. Thus, MFO and EMO-H are likely to prove to be invaluable tools for gynecological research, enabling the population-wide assessment of endometrial health and personalized medicine

    Partial pulmonary embolization disrupts alveolarization in fetal sheep

    No full text
    Abstract Background Although bronchopulmonary dysplasia is closely associated with an arrest of alveolar development and pulmonary capillary dysplasia, it is unknown whether these two features are causally related. To investigate the relationship between pulmonary capillaries and alveolar formation, we partially embolized the pulmonary capillary bed. Methods Partial pulmonary embolization (PPE) was induced in chronically catheterized fetal sheep by injection of microspheres into the left pulmonary artery for 1 day (1d PPE; 115d gestational age; GA) or 5 days (5d PPE; 110-115d GA). Control fetuses received vehicle injections. Lung morphology, secondary septal crests, elastin, collagen, myofibroblast, PECAM1 and HIF1α abundance and localization were determined histologically. VEGF-A, Flk-1, PDGF-A and PDGF-Rα mRNA levels were measured using real-time PCR. Results At 130d GA (term ~147d), in embolized regions of the lung the percentage of lung occupied by tissue was increased from 29 ± 1% in controls to 35 ± 1% in 1d PPE and 44 ± 1% in 5d PPE fetuses (p VEGF and Flk-1, although a small increase in PDGF-Rα expression at 116d GA, from 1.00 ± 0.12 in control fetuses to 1.61 ± 0.18 in 5d PPE fetuses may account for impaired differentiation of alveolar myofibroblasts and alveolar development. Conclusions PPE impairs alveolarization without adverse systemic effects and is a novel model for investigating the role of pulmonary capillaries and alveolar myofibroblasts in alveolar formation.</p

    Comparison of Organoids from Menstrual Fluid and Hormone-Treated Endometrium: Novel Tools for Gynecological Research

    No full text
    Endometrial organoids (EMO) are an important tool for gynecological research but have been limited by generation from (1) invasively acquired tissues and thus advanced disease states and (2) from women who are not taking hormones, thus excluding 50% of the female reproductive-aged population. We sought to overcome these limitations by generating organoids from (1) menstrual fluid (MF; MFO) using a method that enables the concurrent isolation of menstrual fluid supernatant, stromal cells, and leukocytes and (2) from biopsies and hysterectomy samples from women taking hormonal medication (EMO-H). MF was collected in a menstrual cup for 4–6 h on day 2 of menstruation. Biopsies and hysterectomies were obtained during laparoscopic surgery. Organoids were generated from all sample types, with MFO and EMO-H showing similar cell proliferation rates, proportion and localization of the endometrial basalis epithelial marker, Stage Specific Embryonic Antigen-1 (SSEA-1), and gene expression profiles. Organoids from different disease states showed the moderate clustering of epithelial secretory and androgen receptor signaling genes. Thus, MFO and EMO-H are novel organoids that share similar features to EMO but with the advantage of (1) MFO being obtained non-invasively and (2) EMO-H being obtained from 50% of the women who are not currently being studied through standard methods. Thus, MFO and EMO-H are likely to prove to be invaluable tools for gynecological research, enabling the population-wide assessment of endometrial health and personalized medicine

    Blood and immune development in human fetal bone marrow and Down syndrome.

    No full text
    Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21)
    corecore