2,194 research outputs found

    Cenopopulations of Hyssopus officinalis L. in the Belgorod Region: Spatial Structure and Bioresource Potential.

    Get PDF
    Seven cenopopulations of H. officinalis L. were studied in the basin of the Manzhokha River in the south of the Central Russian Upland

    Biological resources of the Hyssopus l on the south of European Russia and prospects of its introduction

    Get PDF
    The south of European Russia (geographically - the southern part of the Central Russian Upland) has large biological and plant genetic resources. There is a concept considering the region as the second anthropogenic microgen center of formation of economically valuable plants. In the south of the Central Russian Upland, the genus Hyssopus L. is represented by two species: Hyssopus cretaceus Dubjan. and Hyssopus officinalis L. Accomplished the study of biological resources of species of the genus Hyssopus L. in vivo and in vitr

    Remote atomic clock synchronization via satellites and optical fibers

    Get PDF
    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10e-15 (relative, 1 day averaging) and time scales can be synchronized with an uncertainty of one nanosecond. Future improvements of worldwide clock comparisons will require also an improvement of the local signal distribution systems. For example, the future ACES (atomic clock ensemble in space) mission shall demonstrate remote time scale comparisons at the uncertainty level of 100 ps. To ensure that the ACES ground instrument will be synchronized to the local time scale at PTB without a significant uncertainty contribution, we have developed a means for calibrated clock comparisons through optical fibers. An uncertainty below 50 ps over a distance of 2 km has been demonstrated on the campus of PTB. This technology is thus in general a promising candidate for synchronization of enhanced time transfer equipment with the local realizations of UTC . Based on these experiments we estimate the uncertainty level for calibrated time transfer through optical fibers over longer distances. These findings are compared with the current status and developments of satellite based time transfer systems, with a focus on the calibration techniques for operational systems

    Curing of epoxy resin DER-331by Hexakis (4-acetamidophenoxy) cyclotriphosphazene and properties of the prepared composition

    Get PDF
    The method of optical wedge revealed that the optimum temperature for compatibility of hexakis(4-acetamidophenoxy)cyclotriphosphazene (ACP) and DER-331 epoxy resin is in the range of 220–260◦C. The interdiffusion time of components at these temperatures is about 30 min. The TGA and differential scanning calorimetry (DSC) methods revealed the curing temperature of 280◦C for thiscomposition. IRspectroscopyconfirmedthatthereactionbetweentheresinandACPiscompleted within 10 mi

    Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slab

    Get PDF
    We study the polarization properties of light emitted by quantum dots that are embedded in chiral photonic crystal structures made of achiral planar GaAs waveguides. A modification of the electromagnetic mode structure due to the chiral grating fabricated by partial etching of the wave\-guide layer has been shown to result in a high circular polarization degree ρc\rho_c of the quantum dot emission in the absence of external magnetic field. The physical nature of the phenomenon can be understood in terms of the reciprocity principle taking into account the structural symmetry. At the resonance wavelength, the magnitude of ρc|\rho_c| is predicted to exceed 98%. The experimentally achieved value of ρc=81|\rho_c|=81% is smaller, which is due to the contribution of unpolarized light scattered by grating defects, thus breaking its periodicity. The achieved polarization degree estimated removing the unpolarized nonresonant background from the emission spectra can be estimated to be as high as 96%, close to the theoretical prediction
    corecore