2,508 research outputs found
Courant-like brackets and loop spaces
We study the algebra of local functionals equipped with a Poisson bracket. We
discuss the underlying algebraic structures related to a version of the
Courant-Dorfman algebra. As a main illustration, we consider the functionals
over the cotangent bundle of the superloop space over a smooth manifold. We
present a number of examples of the Courant-like brackets arising from this
analysis.Comment: 20 pages, the version published in JHE
Systematics of M-theory spinorial geometry
We reduce the classification of all supersymmetric backgrounds in eleven
dimensions to the evaluation of the supercovariant derivative and of an
integrability condition, which contains the field equations, on six types of
spinors. We determine the expression of the supercovariant derivative on all
six types of spinors and give in each case the field equations that do not
arise as the integrability conditions of Killing spinor equations. The Killing
spinor equations of a background become a linear system for the fluxes,
geometry and spacetime derivatives of the functions that determine the spinors.
The solution of the linear system expresses the fluxes in terms of the geometry
and specifies the restrictions on the geometry of spacetime for all
supersymmetric backgrounds. We also show that the minimum number of field
equations that is needed for a supersymmetric configuration to be a solution of
eleven-dimensional supergravity can be found by solving a linear system. The
linear systems of the Killing spinor equations and their integrability
conditions are given in both a timelike and a null spinor basis. We illustrate
the construction with examples.Comment: 46 pages. v2: systematics of a null spinor basis is included in
section
Evaluating the capacity of human gut microorganisms to colonize the zebrafish larvae (Danio rerio)
Indexación: Scopus.In this study we evaluated if zebrafish larvae can be colonized by human gut microorganisms. We tested two strategies: (1) through transplantation of a human fecal microbiota and (2) by successively transplanting aerotolerant anaerobic microorganisms, similar to the colonization in the human intestine during early life. We used conventionally raised zebrafish larvae harboring their own aerobic microbiota to improve the colonization of anaerobic microorganisms. The results showed with the fecal transplant, that some members of the human gut microbiota were transferred to larvae. Bacillus, Roseburia, Prevotella, Oscillospira, one unclassified genus of the family Ruminococcaceae and Enterobacteriaceae were detected in 3 days post fertilization (dpf) larvae; however only Bacillus persisted to 7 dpf. Successive inoculation of Lactobacillus, Bifidobacterium and Clostridioides did not improve their colonization, compared to individual inoculation of each bacterial species. Interestingly, the sporulating bacteria Bacillus clausii and Clostridioides difficile were the most persistent microorganisms. Their endospores persisted at least 5 days after inoculating 3 dpf larvae. However, when 5 dpf larvae were inoculated, the proportion of vegetative cells in larvae increased, revealing proliferation of the inoculated bacteria and better colonization of the host. In conclusion, these results suggest that it is feasible to colonize zebrafish larvae with some human bacteria, such as C. difficile and Bacillus and open an interesting area to study interactions between these microorganisms and the host. © 2018 Valenzuela, Caruffo, Herrera, Medina, Coronado, Feijóo, Muñoz, Garrido, Troncoso, Figueroa, Toro, Reyes-Jara, Magne and Navarrete.https://www.frontiersin.org/articles/10.3389/fmicb.2018.01032/ful
The spinorial geometry of supersymmetric heterotic string backgrounds
We determine the geometry of supersymmetric heterotic string backgrounds for
which all parallel spinors with respect to the connection with
torsion , the NSNS three-form field strength, are Killing. We find
that there are two classes of such backgrounds, the null and the timelike. The
Killing spinors of the null backgrounds have stability subgroups
K\ltimes\bR^8 in , for , SU(4), , and , and the Killing spinors of the timelike backgrounds have
stability subgroups , SU(3), SU(2) and . The former admit a single
null -parallel vector field while the latter admit a timelike and
two, three, five and nine spacelike -parallel vector fields,
respectively. The spacetime of the null backgrounds is a Lorentzian
two-parameter family of Riemannian manifolds with skew-symmetric torsion.
If the rotation of the null vector field vanishes, the holonomy of the
connection with torsion of is contained in . The spacetime of time-like
backgrounds is a principal bundle with fibre a Lorentzian Lie group and
base space a suitable Riemannian manifold with skew-symmetric torsion. The
principal bundle is equipped with a connection which determines the
non-horizontal part of the spacetime metric and of . The curvature of
takes values in an appropriate Lie algebra constructed from that of
. In addition has only horizontal components and contains the
Pontrjagin class of . We have computed in all cases the Killing spinor
bilinears, expressed the fluxes in terms of the geometry and determine the
field equations that are implied by the Killing spinor equations.Comment: 73pp. v2: minor change
The spinorial geometry of supersymmetric backgrounds
We propose a new method to solve the Killing spinor equations of
eleven-dimensional supergravity based on a description of spinors in terms of
forms and on the Spin(1,10) gauge symmetry of the supercovariant derivative. We
give the canonical form of Killing spinors for N=2 backgrounds provided that
one of the spinors represents the orbit of Spin(1,10) with stability subgroup
SU(5). We directly solve the Killing spinor equations of N=1 and some N=2, N=3
and N=4 backgrounds. In the N=2 case, we investigate backgrounds with SU(5) and
SU(4) invariant Killing spinors and compute the associated spacetime forms. We
find that N=2 backgrounds with SU(5) invariant Killing spinors admit a timelike
Killing vector and that the space transverse to the orbits of this vector field
is a Hermitian manifold with an SU(5)-structure. Furthermore, N=2 backgrounds
with SU(4) invariant Killing spinors admit two Killing vectors, one timelike
and one spacelike. The space transverse to the orbits of the former is an
almost Hermitian manifold with an SU(4)-structure and the latter leaves the
almost complex structure invariant. We explore the canonical form of Killing
spinors for backgrounds with extended, N>2, supersymmetry. We investigate a
class of N=3 and N=4 backgrounds with SU(4) invariant spinors. We find that in
both cases the space transverse to a timelike vector field is a Hermitian
manifold equipped with an SU(4)-structure and admits two holomorphic Killing
vector fields. We also present an application to M-theory Calabi-Yau
compactifications with fluxes to one-dimension.Comment: Latex, 54 pages, v2: clarifications made and references added. v3:
minor changes. v4: minor change
Killing spectroscopy of closed timelike curves
We analyse the existence of closed timelike curves in spacetimes which
possess an isometry. In particular we check which discrete quotients of such
spaces lead to closed timelike curves. As a by-product of our analysis, we
prove that the notion of existence or non-existence of closed timelike curves
is a T-duality invariant notion, whenever the direction along which we apply
such transformations is everywhere spacelike. Our formalism is
straightforwardly applied to supersymmetric theories. We provide some new
examples in the context of D-branes and generalized pp-waves.Comment: 1+35 pages, no figures; v2, new references added. Final version to
appear in JHE
D-branes with Lorentzian signature in the Nappi-Witten model
Lorentzian signature D-branes of all dimensions for the Nappi-Witten string
are constructed. This is done by rewriting the gluing condition for
the model chiral currents on the brane as a well posed first order differential
problem and by solving it for Lie algebra isometries other than Lie algebra
automorphisms. By construction, these D-branes are not twined conjugacy
classes. Metrically degenerate D-branes are also obtained.Comment: 22 page
Highly non-Gaussian states created via cross-Kerr nonlinearity
We propose a feasible scheme for generation of strongly non-Gaussian states
using the cross-Kerr nonlinearity. The resultant states are highly
non-classical states of electromagnetic field and exhibit negativity of their
Wigner function, sub-Poissonian photon statistics, and amplitude squeezing.
Furthermore, the Wigner function has a distinctly pronounced ``banana'' or
``crescent'' shape specific for the Kerr-type interactions, which so far was
not demonstrated experimentally. We show that creating and detecting such
states should be possible with the present technology using electromagnetically
induced transparency in a four-level atomic system in N-configuration.Comment: 12 pages, 7 figure
Geometric construction of D-branes in WZW models
The geometric description of D-branes in WZW models is pushed forward. Our
starting point is a gluing condition\, that matches the model's
chiral currents at the worldsheet boundary through a linear map acting on
the WZW Lie algebra. The equivalence of boundary and gluing conditions of this
type is studied in detail. The analysis involves a thorough discussion of
Frobenius integrability, shows that must be an isometry, and applies to
both metrically degenerate and nondegenerate D-branes. The isometry need
not be a Lie algebra automorphism nor constantly defined over the brane. This
approach, when applied to isometries of the form with a constant Lie
algebra automorphism, validates metrically degenerate -twined conjugacy
classes as D-branes. It also shows that no D-branes exist in semisimple WZW
models for constant\, .Comment: 23 pages, discussion of limitations of the gluing condition approach
adde
On the supersymmetries of anti de Sitter vacua
We present details of a geometric method to associate a Lie superalgebra with
a large class of bosonic supergravity vacua of the type AdS x X, corresponding
to elementary branes in M-theory and type II string theory.Comment: 16 page
- …