2,508 research outputs found

    Courant-like brackets and loop spaces

    Full text link
    We study the algebra of local functionals equipped with a Poisson bracket. We discuss the underlying algebraic structures related to a version of the Courant-Dorfman algebra. As a main illustration, we consider the functionals over the cotangent bundle of the superloop space over a smooth manifold. We present a number of examples of the Courant-like brackets arising from this analysis.Comment: 20 pages, the version published in JHE

    Systematics of M-theory spinorial geometry

    Full text link
    We reduce the classification of all supersymmetric backgrounds in eleven dimensions to the evaluation of the supercovariant derivative and of an integrability condition, which contains the field equations, on six types of spinors. We determine the expression of the supercovariant derivative on all six types of spinors and give in each case the field equations that do not arise as the integrability conditions of Killing spinor equations. The Killing spinor equations of a background become a linear system for the fluxes, geometry and spacetime derivatives of the functions that determine the spinors. The solution of the linear system expresses the fluxes in terms of the geometry and specifies the restrictions on the geometry of spacetime for all supersymmetric backgrounds. We also show that the minimum number of field equations that is needed for a supersymmetric configuration to be a solution of eleven-dimensional supergravity can be found by solving a linear system. The linear systems of the Killing spinor equations and their integrability conditions are given in both a timelike and a null spinor basis. We illustrate the construction with examples.Comment: 46 pages. v2: systematics of a null spinor basis is included in section

    Evaluating the capacity of human gut microorganisms to colonize the zebrafish larvae (Danio rerio)

    Get PDF
    Indexación: Scopus.In this study we evaluated if zebrafish larvae can be colonized by human gut microorganisms. We tested two strategies: (1) through transplantation of a human fecal microbiota and (2) by successively transplanting aerotolerant anaerobic microorganisms, similar to the colonization in the human intestine during early life. We used conventionally raised zebrafish larvae harboring their own aerobic microbiota to improve the colonization of anaerobic microorganisms. The results showed with the fecal transplant, that some members of the human gut microbiota were transferred to larvae. Bacillus, Roseburia, Prevotella, Oscillospira, one unclassified genus of the family Ruminococcaceae and Enterobacteriaceae were detected in 3 days post fertilization (dpf) larvae; however only Bacillus persisted to 7 dpf. Successive inoculation of Lactobacillus, Bifidobacterium and Clostridioides did not improve their colonization, compared to individual inoculation of each bacterial species. Interestingly, the sporulating bacteria Bacillus clausii and Clostridioides difficile were the most persistent microorganisms. Their endospores persisted at least 5 days after inoculating 3 dpf larvae. However, when 5 dpf larvae were inoculated, the proportion of vegetative cells in larvae increased, revealing proliferation of the inoculated bacteria and better colonization of the host. In conclusion, these results suggest that it is feasible to colonize zebrafish larvae with some human bacteria, such as C. difficile and Bacillus and open an interesting area to study interactions between these microorganisms and the host. © 2018 Valenzuela, Caruffo, Herrera, Medina, Coronado, Feijóo, Muñoz, Garrido, Troncoso, Figueroa, Toro, Reyes-Jara, Magne and Navarrete.https://www.frontiersin.org/articles/10.3389/fmicb.2018.01032/ful

    The spinorial geometry of supersymmetric heterotic string backgrounds

    Full text link
    We determine the geometry of supersymmetric heterotic string backgrounds for which all parallel spinors with respect to the connection ^\hat\nabla with torsion HH, the NS\otimesNS three-form field strength, are Killing. We find that there are two classes of such backgrounds, the null and the timelike. The Killing spinors of the null backgrounds have stability subgroups K\ltimes\bR^8 in Spin(9,1)Spin(9,1), for K=Spin(7)K=Spin(7), SU(4), Sp(2)Sp(2), SU(2)×SU(2)SU(2)\times SU(2) and {1}\{1\}, and the Killing spinors of the timelike backgrounds have stability subgroups G2G_2, SU(3), SU(2) and {1}\{1\}. The former admit a single null ^\hat\nabla-parallel vector field while the latter admit a timelike and two, three, five and nine spacelike ^\hat\nabla-parallel vector fields, respectively. The spacetime of the null backgrounds is a Lorentzian two-parameter family of Riemannian manifolds BB with skew-symmetric torsion. If the rotation of the null vector field vanishes, the holonomy of the connection with torsion of BB is contained in KK. The spacetime of time-like backgrounds is a principal bundle PP with fibre a Lorentzian Lie group and base space a suitable Riemannian manifold with skew-symmetric torsion. The principal bundle is equipped with a connection λ\lambda which determines the non-horizontal part of the spacetime metric and of HH. The curvature of λ\lambda takes values in an appropriate Lie algebra constructed from that of KK. In addition dHdH has only horizontal components and contains the Pontrjagin class of PP. We have computed in all cases the Killing spinor bilinears, expressed the fluxes in terms of the geometry and determine the field equations that are implied by the Killing spinor equations.Comment: 73pp. v2: minor change

    The spinorial geometry of supersymmetric backgrounds

    Full text link
    We propose a new method to solve the Killing spinor equations of eleven-dimensional supergravity based on a description of spinors in terms of forms and on the Spin(1,10) gauge symmetry of the supercovariant derivative. We give the canonical form of Killing spinors for N=2 backgrounds provided that one of the spinors represents the orbit of Spin(1,10) with stability subgroup SU(5). We directly solve the Killing spinor equations of N=1 and some N=2, N=3 and N=4 backgrounds. In the N=2 case, we investigate backgrounds with SU(5) and SU(4) invariant Killing spinors and compute the associated spacetime forms. We find that N=2 backgrounds with SU(5) invariant Killing spinors admit a timelike Killing vector and that the space transverse to the orbits of this vector field is a Hermitian manifold with an SU(5)-structure. Furthermore, N=2 backgrounds with SU(4) invariant Killing spinors admit two Killing vectors, one timelike and one spacelike. The space transverse to the orbits of the former is an almost Hermitian manifold with an SU(4)-structure and the latter leaves the almost complex structure invariant. We explore the canonical form of Killing spinors for backgrounds with extended, N>2, supersymmetry. We investigate a class of N=3 and N=4 backgrounds with SU(4) invariant spinors. We find that in both cases the space transverse to a timelike vector field is a Hermitian manifold equipped with an SU(4)-structure and admits two holomorphic Killing vector fields. We also present an application to M-theory Calabi-Yau compactifications with fluxes to one-dimension.Comment: Latex, 54 pages, v2: clarifications made and references added. v3: minor changes. v4: minor change

    Killing spectroscopy of closed timelike curves

    Full text link
    We analyse the existence of closed timelike curves in spacetimes which possess an isometry. In particular we check which discrete quotients of such spaces lead to closed timelike curves. As a by-product of our analysis, we prove that the notion of existence or non-existence of closed timelike curves is a T-duality invariant notion, whenever the direction along which we apply such transformations is everywhere spacelike. Our formalism is straightforwardly applied to supersymmetric theories. We provide some new examples in the context of D-branes and generalized pp-waves.Comment: 1+35 pages, no figures; v2, new references added. Final version to appear in JHE

    D-branes with Lorentzian signature in the Nappi-Witten model

    Get PDF
    Lorentzian signature D-branes of all dimensions for the Nappi-Witten string are constructed. This is done by rewriting the gluing condition J+=FJJ_+=FJ_- for the model chiral currents on the brane as a well posed first order differential problem and by solving it for Lie algebra isometries FF other than Lie algebra automorphisms. By construction, these D-branes are not twined conjugacy classes. Metrically degenerate D-branes are also obtained.Comment: 22 page

    Highly non-Gaussian states created via cross-Kerr nonlinearity

    Full text link
    We propose a feasible scheme for generation of strongly non-Gaussian states using the cross-Kerr nonlinearity. The resultant states are highly non-classical states of electromagnetic field and exhibit negativity of their Wigner function, sub-Poissonian photon statistics, and amplitude squeezing. Furthermore, the Wigner function has a distinctly pronounced ``banana'' or ``crescent'' shape specific for the Kerr-type interactions, which so far was not demonstrated experimentally. We show that creating and detecting such states should be possible with the present technology using electromagnetically induced transparency in a four-level atomic system in N-configuration.Comment: 12 pages, 7 figure

    Geometric construction of D-branes in WZW models

    Get PDF
    The geometric description of D-branes in WZW models is pushed forward. Our starting point is a gluing condition\, J+=FJJ_{+}=FJ_- that matches the model's chiral currents at the worldsheet boundary through a linear map FF acting on the WZW Lie algebra. The equivalence of boundary and gluing conditions of this type is studied in detail. The analysis involves a thorough discussion of Frobenius integrability, shows that FF must be an isometry, and applies to both metrically degenerate and nondegenerate D-branes. The isometry FF need not be a Lie algebra automorphism nor constantly defined over the brane. This approach, when applied to isometries of the form F=RF=R with RR a constant Lie algebra automorphism, validates metrically degenerate RR-twined conjugacy classes as D-branes. It also shows that no D-branes exist in semisimple WZW models for constant\, F=RF=-R.Comment: 23 pages, discussion of limitations of the gluing condition approach adde

    On the supersymmetries of anti de Sitter vacua

    Full text link
    We present details of a geometric method to associate a Lie superalgebra with a large class of bosonic supergravity vacua of the type AdS x X, corresponding to elementary branes in M-theory and type II string theory.Comment: 16 page
    corecore