138 research outputs found

    Multiscale Modeling of Superior Cavopulmonary Circulation: Hemi-Fontan and Bidirectional Glenn Are Equivalent

    Get PDF
    Superior cavopulmonary circulation (SCPC) can be achieved by either the Hemi-Fontan (hF) or Bidirectional Glenn (bG) connection. Debate remains as to which results in best hemodynamic results. Adopting patient-specific multiscale computational modeling, we examined both the local dynamics and global physiology to determine if surgical choice can lead to different hemodynamic outcomes. Six patients (age: 3-6 months) underwent cardiac magnetic resonance imaging and catheterization prior to SCPC surgery. For each patient: (1) a finite 3-dimensional (3D) volume model of the preoperative anatomy was constructed to include detailed definition of the distal branch pulmonary arteries, (2) virtual hF and bG operations were performed to create 2 SCPC 3D models, and (3) a specific lumped network representing each patient's entire cardiovascular circulation was developed from clinical data. Using a previously validated multiscale algorithm that couples the 3D models with lumped network, both local flow dynamics, that is, power loss, and global systemic physiology can be quantified. In 2 patients whose preoperative imaging demonstrated significant left pulmonary artery (LPA) stenosis, we performed virtual pulmonary arterioplasty to assess its effect. In one patient, the hF model showed higher power loss (107%) than the bG, while in 3, the power losses were higher in the bG models (18-35%). In the remaining 2 patients, the power loss differences were minor. Despite these variations, for all patients, there were no significant differences between the hF and bG models in hemodynamic or physiological outcomes, including cardiac output, superior vena cava pressure, right-left pulmonary flow distribution, and systemic oxygen delivery. In the 2 patients with LPA stenosis, arterioplasty led to better LPA flow (5-8%) while halving the power loss, but without important improvements in SVC pressure or cardiac output. Despite power loss differences, both hF and bG result in similar SCPC hemodynamics and physiology outcome. This suggests that for SCPC, the pre-existing patient-specific physiology and condition, such as pulmonary vascular resistance, are more deterministic in the hemodynamic performance than the type of surgical palliation. Multiscale modeling can be a decision-assist tool to assess whether an extensive LPA reconstruction is needed at the time of SCPC for LPA stenosis

    Modeling Single Ventricle Physiology: Review of Engineering Tools to Study First Stage Palliation of Hypoplastic Left Heart Syndrome.

    Get PDF
    First stage palliation of hypoplastic left heart syndrome, i.e., the Norwood operation, results in a complex physiological arrangement, involving different shunting options (modified Blalock-Taussig, RV-PA conduit, central shunt from the ascending aorta) and enlargement of the hypoplastic ascending aorta. Engineering techniques, both computational and experimental, can aid in the understanding of the Norwood physiology and their correct implementation can potentially lead to refinement of the decision-making process, by means of patient-specific simulations. This paper presents some of the available tools that can corroborate clinical evidence by providing detailed insight into the fluid dynamics of the Norwood circulation as well as alternative surgical scenarios (i.e., virtual surgery). Patient-specific anatomies can be manufactured by means of rapid prototyping and such models can be inserted in experimental set-ups (mock circulatory loops) that can provide a valuable source of validation data as well as hydrodynamic information. Such models can be tuned to respond to differing the patient physiologies. Experimental set-ups can also be compatible with visualization techniques, like particle image velocimetry and cardiovascular magnetic resonance, further adding to the knowledge of the local fluid dynamics. Multi-scale computational models include detailed three-dimensional (3D) anatomical information coupled to a lumped parameter network representing the remainder of the circulation. These models output both overall hemodynamic parameters while also enabling to investigate the local fluid dynamics of the aortic arch or the shunt. As an alternative, pure lumped parameter models can also be employed to model Stage 1 palliation, taking advantage of a much lower computational cost, albeit missing the 3D anatomical component. Finally, analytical techniques, such as wave intensity analysis, can be employed to study the Norwood physiology, providing a mechanistic perspective on the ventriculo-arterial coupling for this specific surgical scenario

    Induction of Autophagy by Cystatin C: A Mechanism That Protects Murine Primary Cortical Neurons and Neuronal Cell Lines

    Get PDF
    Cystatin C (CysC) expression in the brain is elevated in human patients with epilepsy, in animal models of neurodegenerative conditions, and in response to injury, but whether up-regulated CysC expression is a manifestation of neurodegeneration or a cellular repair response is not understood. This study demonstrates that human CysC is neuroprotective in cultures exposed to cytotoxic challenges, including nutritional-deprivation, colchicine, staurosporine, and oxidative stress. While CysC is a cysteine protease inhibitor, cathepsin B inhibition was not required for the neuroprotective action of CysC. Cells responded to CysC by inducing fully functional autophagy via the mTOR pathway, leading to enhanced proteolytic clearance of autophagy substrates by lysosomes. Neuroprotective effects of CysC were prevented by inhibiting autophagy with beclin 1 siRNA or 3-methyladenine. Our findings show that CysC plays a protective role under conditions of neuronal challenge by inducing autophagy via mTOR inhibition and are consistent with CysC being neuroprotective in neurodegenerative diseases. Thus, modulation of CysC expression has therapeutic implications for stroke, Alzheimer's disease, and other neurodegenerative disorders

    Value-Driven Analysis of New Paradigms in Space Architectures: An Ilities-Based Approach

    Get PDF
    Current commercial, civil, and military space architecture designs perform exquisitely and reliably. However, today’s architecture paradigms are also characterized by expensive launches, large and expensive high-performance spacecraft, long development cycles, and wide variations in ground architectures. While current assets provide high-quality services, and future assets are slated to improve performance within the same design frameworks, proposed future architectures may not be capitalizing on technology improvements, system innovations, or policy alternatives explored during the last two decades. This paper identifies five “trends” along which space architectures may develop, aimed at granting systems several “ilities,” such as resiliency, robustness, flexibility, scalability, and affordability. The trends examined include: commercialization of space, significant reductions in launch costs and the development of hybrid or reusable launch systems, development of on-orbit infrastructure and servicing, aggregation or disaggregation of orbital assets, and the automation and standardization of ground architectures. Further refinement of these key technological and system trends could result in major paradigm shifts in the development and fielding of space operations as well as lead to space architecture designs in the future that are radically different from those today. Within the framework of systems engineering ilities and risk management, this paper reviews current literature surrounding these new change trends and justifies their potential to cause significant paradigm shifts. By examining the work and research conducted so far through an ilities-based approach, systems engineers can more fully appreciate the value being offered by these trends

    An interactive simulation tool for patient-specific clinical decision support in single-ventricle physiology

    Get PDF
    OBJECTIVE: Modeling of single-ventricle circulations has yielded important insights into their unique flow dynamics and physiology. Here we translated a state-of-the-art mathematical model into a patient-specific clinical decision support interactive Web-based simulation tool and show validation for all 3 stages of single-ventricular palliation. METHODS: Via the adoption a validated lumped parameter method, complete cardiovascular-pulmonary circulatory models of all 3 stages of single-ventricle physiology were created within a simulation tool. The closed-loop univentricular heart model includes scaling for growth and respiratory effects, and typical patient-specific parameters are entered through an intuitive user interface. The effects of medical or surgical interventions can be simulated and compared. To validate the simulator, patient parameters were collected from catheterization reports. Four simulator outputs were compared against catheterization findings: pulmonary to systemic flow ratio (Qp:Qs), systemic arterial saturation (SaO2), mean pulmonary arterial pressure (mPAp), and systemic–venous oxygen difference (SaO2–SvO2). RESULTS: Data from 60 reports were used. Compared with the clinical values, the simulator results were not significantly different in mean Qp:Qs, SaO2, or mPAp (P > .09). There was a statistical but clinically insignificant difference in average SaO–SvO2 (average difference 1%, P < .01). Linear regression analyses revealed a good prediction for each variable (Qp:Qs, R2 = 0.79; SaO2, R2 = 0.64; mPAp, R2 = 0.69; SaO2–SvO2, R2 = 0.93). CONCLUSIONS: This simulator responds quickly and predicts patient-specific hemodynamics with good clinical accuracy. By predicting postoperative and postintervention hemodynamics in all 3 stages of single-ventricle physiology, the simulator could assist in clinical decision-making, training, and consultation. Continuing model refinement and validation will further its application to the bedside

    Coordinated Sumoylation and Ubiquitination Modulate EGF Induced EGR1 Expression and Stability

    Get PDF
    Abstract: Background: Human early growth response-1 (EGR1) is a member of the zing-finger family of transcription factors induced by a range of molecular and environmental stimuli including epidermal growth factor (EGF). In a recently published paper we demonstrated that integrin/EGFR cross-talk was required for Egr1 expression through activation of the Erk1/2 and PI3K/Akt/Forkhead pathways. EGR1 activity and stability can be influenced by many different post-translational modifications such as acetylation, phosphorylation, ubiquitination and the recently discovered sumoylation. The aim of this work was to assess the influence of sumoylation on EGF induced Egr1 expression and/or stability. Methods: We modulated the expression of proteins involved in the sumoylation process in ECV304 cells by transient transfection and evaluated Egr1 expression in response to EGF treatment at mRNA and protein levels. Results: We demonstrated that in ECV304 cells Egr1 was transiently induced upon EGF treatment and a fraction of the endogenous protein was sumoylated. Moreover, SUMO-1/Ubc9 over-expression stabilized EGF induced ERK1/2 phosphorylation and increased Egr1 gene transcription. Conversely, in SUMO-1/Ubc9 transfected cells, EGR1 protein levels were strongly reduced. Data obtained from protein expression and ubiquitination analysis, in the presence of the proteasome inhibitor MG132, suggested that upon EGF stimuli EGR1 sumoylation enhanced its turnover, increasing ubiquitination and proteasome mediated degradation. Conclusions: Here we demonstrate that SUMO-1 modification improving EGR1 ubiquitination is involved in the modulation of its stability upon EGF mediated induction
    corecore