336 research outputs found

    pMel17 is recognised by monoclonal antibodies NKI-beteb, HMB-45 and HMB-50 and by anti-melanoma CTL.

    Get PDF
    Recently, we cloned the cDNA encoding the melanocyte lineage-specific antigen gp100 and demonstrated that gp100 is recognised by three different monoclonal antibodies (MAbs) used to diagnose malignant melanoma. In addition, we showed that tumour-infiltrating lymphocytes (TIL 1200) from a melanoma patient reacted specifically with cells transfected with the gp100 cDNA. Molecular characterisation of the gp100 cDNA revealed that the gp100 antigen is highly homologous, but not identical, to another melanocyte-specific protein, pMel17. Here, we report that cells transfected with pMel17 cDNA also react with all three MAbs used to diagnose malignant melanoma, NKI-beteb, HMB-45 and HMB-50. Moreover, pMel17 transfectants are specifically lysed by TIL1200. These data demonstrate that antigenic processing of both gp100 and pMel17 give rise to peptides seen by anti-melanoma cytotoxic T lymphocytes (CTL) and are therefore potential targets for immunotherapy of malignant melanoma

    Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity

    Get PDF
    Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo-generated, tumour antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. We formerly showed in murine models that radiofrequency-mediated tumour destruction can provide an antigen source for the in vivo induction of anti-tumour immunity, and we explored the role of DC herein. In this paper we evaluate radiofrequency and cryo ablation for their ability to provide an antigen source for DC and compare this with an ex vivo-loaded DC vaccine. The data obtained with model antigens demonstrate that upon tumour destruction by radiofrequency ablation, up to 7% of the total draining lymph node (LN) DC contained antigen, whereas only few DC from the conventional vaccine reached the LN. Interestingly, following cryo ablation the amount of antigen-loaded DC is almost doubled. Analysis of surface markers revealed that both destruction methods were able to induce DC maturation. Finally, we show that in situ tumour ablation can be efficiently combined with immune modulation by anti-CTLA-4 antibodies or regulatory T-cell depletion. These combination treatments protected mice from the outgrowth of tumour challenges, and led to in vivo enhancement of tumour-specific T-cell numbers, which produced more IFN-γ upon activation. Therefore, in situ tumour destruction in combination with immune modulation creates a unique, ‘in situ DC-vaccine' that is readily applicable in the clinic without prior knowledge of tumour antigens

    The key role of CD40 ligand in overcoming tumor-induced dendritic cell dysfunction

    Get PDF
    Overcoming dendritic cell (DC) dysfunction is a prerequisite for successful active immunotherapy against breast cancer. CD40 ligand (CD40L), a key molecule in the interface between T-lymphocytes and DCs, seems to be instrumental in achieving that goal. Commenting on our data that CD40L protects circulating DCs from apoptosis induced by breast tumor products, Lenahan and Avigan highlighted the potential of CD40L for immunotherapy. We expand on that argument by pointing to additional findings that CD40L not only rescues genuine DCs but also functionally improves populations of immature antigen-presenting cells that fill the DC compartment in patients with breast cancer

    A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients

    Get PDF
    Contains fulltext : 87604.pdf (publisher's version ) (Closed access)BACKGROUND: Dendritic cell (DC) vaccination has been shown to induce anti-tumour immune responses in cancer patients, but so far its clinical efficacy is limited. Recent evidence supports an immunogenic effect of cytotoxic chemotherapy. Pre-clinical data indicate that the combination of chemotherapy and immunotherapy may result in an enhanced anti-cancer activity. Most studies have focused on the immunogenic aspect of chemotherapy-induced cell death, but only few studies have investigated the effect of chemotherapeutic agents on the effector lymphocytes of the immune system. METHODS: Here we investigated the effect of treatment with oxaliplatin and capecitabine on non-specific and specific DC vaccine-induced adaptive immune responses. Stage III colon cancer patients receiving standard adjuvant oxaliplatin/capecitabine chemotherapy were vaccinated at the same time with keyhole limpet haemocyanin (KLH) and carcinoembryonic antigen (CEA)-peptide pulsed DCs. RESULTS: In 4 out of 7 patients, functional CEA-specific T-cell responses were found at delayed type hypersensitivity (DTH) skin testing. In addition, we observed an enhanced non-specific T-cell reactivity upon oxaliplatin administration. KLH-specific T-cell responses remained unaffected by the chemotherapy, whereas B-cell responses were diminished. CONCLUSION: The results strongly support further testing of the combined use of specific anti-tumour vaccination with oxaliplatin-based chemotherapy
    • …
    corecore