29 research outputs found
The Predictive Nature of Individual Differences in Early Associative Learning and Emerging Social Behavior
Across the first year of life, infants achieve remarkable success in their ability to interact in the social world. The hierarchical nature of circuit and skill development predicts that the emergence of social behaviors may depend upon an infant's early abilities to detect contingencies, particularly socially-relevant associations. Here, we examined whether individual differences in the rate of associative learning at one month of age is an enduring predictor of social, imitative, and discriminative behaviors measured across the human infant's first year. One-month learning rate was predictive of social behaviors at 5, 9, and 12 months of age as well as face-evoked discriminative neural activity at 9 months of age. Learning was not related to general cognitive abilities. These results underscore the importance of early contingency learning and suggest the presence of a basic mechanism underlying the ontogeny of social behaviors
A Melodic Contour Repeatedly Experienced by Human Near-Term Fetuses Elicits a Profound Cardiac Reaction One Month after Birth
Human hearing develops progressively during the last trimester of gestation. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, and process complex auditory streams. Fetal and neonatal studies show that they can remember frequently recurring sounds. However, existing data can only show retention intervals up to several days after birth.Here we show that auditory memories can last at least six weeks. Experimental fetuses were given precisely controlled exposure to a descending piano melody twice daily during the 35(th), 36(th), and 37(th) weeks of gestation. Six weeks later we assessed the cardiac responses of 25 exposed infants and 25 naive control infants, while in quiet sleep, to the descending melody and to an ascending control piano melody. The melodies had precisely inverse contours, but similar spectra, identical duration, tempo and rhythm, thus, almost identical amplitude envelopes. All infants displayed a significant heart rate change. In exposed infants, the descending melody evoked a cardiac deceleration that was twice larger than the decelerations elicited by the ascending melody and by both melodies in control infants.Thus, 3-weeks of prenatal exposure to a specific melodic contour affects infants 'auditory processing' or perception, i.e., impacts the autonomic nervous system at least six weeks later, when infants are 1-month old. Our results extend the retention interval over which a prenatally acquired memory of a specific sound stream can be observed from 3-4 days to six weeks. The long-term memory for the descending melody is interpreted in terms of enduring neurophysiological tuning and its significance for the developmental psychobiology of attention and perception, including early speech perception, is discussed
Update on hypertrophic cardiomyopathy and a guide to the guidelines
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, affecting 1 in 500 individuals worldwide. Existing epidemiological studies might have underestimated the prevalence of HCM, however, owing to limited inclusion of individuals with early, incomplete phenotypic expression. Clinical manifestations of HCM include diastolic dysfunction, left ventricular outflow tract obstruction, ischaemia, atrial fibrillation, abnormal vascular responses and, in 5% of patients, progression to a 'burnt-out' phase characterized by systolic impairment. Disease-related mortality is most often attributable to sudden cardiac death, heart failure, and embolic stroke. The majority of individuals with HCM, however, have normal or near-normal life expectancy, owing in part to contemporary management strategies including family screening, risk stratification, thromboembolic prophylaxis, and implantation of cardioverter-defibrillators. The clinical guidelines for HCM issued by the ACC Foundation/AHA and the ESC facilitate evaluation and management of the disease. In this Review, we aim to assist clinicians in navigating the guidelines by highlighting important updates, current gaps in knowledge, differences in the recommendations, and challenges in implementing them, including aids and pitfalls in clinical and pathological evaluation. We also discuss the advances in genetics, imaging, and molecular research that will underpin future developments in diagnosis and therapy for HCM
Cortical processing of multimodal sensory learning in human neonates
Following birth, infants must immediately process and rapidly adapt to the array of unknown sensory experiences associated with their new ex-utero environment. However, although it is known that unimodal stimuli induce activity in the corresponding primary sensory cortices of the newborn brain, it is unclear how multimodal stimuli are processed and integrated across modalities. The latter is essential for learning and understanding environmental contingencies through encoding relationships between sensory experiences; and ultimately likely subserves development of life-long skills such as speech and language. Here, for the first time, we map the intracerebral processing which underlies auditory-sensorimotor classical conditioning in a group of 13 neonates (median gestational age at birth: 38 weeks + 4 days, range: 32 weeks + 2 days to 41 weeks + 6 days; median postmenstrual age at scan: 40 weeks + 5 days, range: 38 weeks + 3 days to 42 weeks + 1 days) with blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (MRI) and magnetic resonance (MR) compatible robotics. We demonstrate that classical conditioning can induce crossmodal changes within putative unimodal sensory cortex even in the absence of its archetypal substrate. Our results also suggest that multimodal learning is associated with network wide activity within the conditioned neural system. These findings suggest that in early life, external multimodal sensory stimulation and integration shapes activity in the developing cortex and may influence its associated functional network architecture