7,205 research outputs found
Continuous high pressure lump coal feeder design study
A continuous lump coal dry feeder was developed for a pressurized fluidized bed combustor. The approach was to adapt the commercially available Fuller-Kinyon pump to feed coal against a pressure differential of 100 psi or more. The pump was modified and tests performed at various pressure differentials, with differently pitched screws, various screw rotational speeds, and various seal lengths and configurations. Successful operation of the modified Fuller-Kinyon pump was generally limited to pressure differentials of 60 psi or less. Although the results are not conclusive, test data and observations were made that indicated that higher pressure differentials could be attained by further modifications of the test setup. In particular, it is recommended that further testing be performed after replacing the 40-horsepower pump motor presently in the test setup with a motor having a significantly high power rating (thereby allowing pump operation with longer seals and at higher pressure differentials than those tested so far)
On Carbon Burning in Super Asymptotic Giant Branch Stars
We explore the detailed and broad properties of carbon burning in Super
Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models.
The location of first carbon ignition, quenching location of the carbon burning
flames and flashes, angular frequency of the carbon core, and carbon core mass
are studied as a function of the ZAMS mass, initial rotation rate, and mixing
parameters such as convective overshoot, semiconvection, thermohaline and
angular momentum transport. In general terms, we find these properties of
carbon burning in SAGB models are not a strong function of the initial rotation
profile, but are a sensitive function of the overshoot parameter. We
quasi-analytically derive an approximate ignition density, g cm, to predict the location of first carbon ignition
in models that ignite carbon off-center. We also find that overshoot moves the
ZAMS mass boundaries where off-center carbon ignition occurs at a nearly
uniform rate of / 1.6
. For zero overshoot, =0.0, our models in the ZAMS mass
range 8.9 to 11 show off-center carbon ignition. For
canonical amounts of overshooting, =0.016, the off-center carbon
ignition range shifts to 7.2 to 8.8 . Only systems with
and ZAMS mass 7.2-8.0 show
carbon burning is quenched a significant distance from the center. These
results suggest a careful assessment of overshoot modeling approximations on
claims that carbon burning quenches an appreciable distance from the center of
the carbon core.Comment: Accepted ApJ; 23 pages, 21 figures, 5 table
The Primordial Lithium Problem
Big-bang nucleosynthesis (BBN) theory, together with the precise WMAP cosmic
baryon density, makes tight predictions for the abundances of the lightest
elements. Deuterium and 4He measurements agree well with expectations, but 7Li
observations lie a factor 3-4 below the BBN+WMAP prediction. This 4-5\sigma\
mismatch constitutes the cosmic "lithium problem," with disparate solutions
possible. (1) Astrophysical systematics in the observations could exist but are
increasingly constrained. (2) Nuclear physics experiments provide a wealth of
well-measured cross-section data, but 7Be destruction could be enhanced by
unknown or poorly-measured resonances, such as 7Be + 3He -> 10C^* -> p + 9B.
(3) Physics beyond the Standard Model can alter the 7Li abundance, though D and
4He must remain unperturbed; we discuss such scenarios, highlighting decaying
Supersymmetric particles and time-varying fundamental constants. Present and
planned experiments could reveal which (if any) of these is the solution to the
problem.Comment: 29 pages, 7 figures. Per Annual Reviews policy, this is the original
submitted draft. Posted with permission from the Annual Review of Nuclear and
Particle Science, Volume 61. Annual Reviews, http://www.annualreviews.org .
Final published version at
http://www.annualreviews.org/doi/abs/10.1146/annurev-nucl-102010-13044
Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy
Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H2O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H2O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure
Cosmological Cosmic Rays: Sharpening the Primordial Lithium Problem
Cosmic structure formation leads to large-scale shocked baryonic flows which
are expected to produce a cosmological population of structure-formation cosmic
rays (SFCRs). Interactions between SFCRs and ambient baryons will produce
lithium isotopes via \alpha+\alpha \to ^{6,7}Li. This pre-Galactic (but
non-primordial) lithium should contribute to the primordial 7Li measured in
halo stars and must be subtracted in order to arrive to the true observed
primordial lithium abundance. In this paper we point out that the recent halo
star 6Li measurements can be used to place a strong constraint to the level of
such contamination, because the exclusive astrophysical production of 6Li is
from cosmic-ray interactions. We find that the putative 6Li plateau, if due to
pre-Galactic cosmic-ray interactions, implies that SFCR-produced lithium
represents Li_{SFCR}/Li_{plateau}\approx 15% of the observed elemental Li
plateau. Taking the remaining plateau Li to be cosmological 7Li, we find a
revised (and slightly worsened) discrepancy between the Li observations and Big
Bang Nucleosynthesis predictions by a factor of ^7Li_{BBN}/^7Li_{plateau}
\approx 3.7. Moreover, SFCRs would also contribute to the extragalactic
gamma-ray background (EGRB) through neutral pion production. This gamma-ray
production is tightly related to the amount of lithium produced by the same
cosmic rays; the 6Li plateau limits the pre-Galactic (high-redshift) SFCR
contribution to be at the level of I_{\pi_{\gamma}SFCR}/I_{EGRB} < 5% of the
currently observed EGRB.Comment: 4 pages, accepted for publication in PR
Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft
A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem
Development of an integrated, zero-G pneumatic transporter/rotating-paddle incinerator/catalytic afterburner subsystem for processing human waste on board spacecraft
A baseline laboratory prototype of an integrated, six man, zero-g subsystem for processing human wastes onboard spacecraft was investigated, and included the development of an operational specification for the baseline subsystem, followed by design and fabrication. The program was concluded by performing a series of six tests over a period of two weeks to evaluate the performance of the subsystem. The results of the tests were satisfactory, however, several changes in the design of the subsystem are required before completely satisfactory performance can be achieved
Bell's Theorem from Moore's Theorem
It is shown that the restrictions of what can be inferred from
classically-recorded observational outcomes that are imposed by the no-cloning
theorem, the Kochen-Specker theorem and Bell's theorem also follow from
restrictions on inferences from observations formulated within classical
automata theory. Similarities between the assumptions underlying classical
automata theory and those underlying universally-unitary quantum theory are
discussed.Comment: 12 pages; to appear in Int. J. General System
Resonant Destruction as a Possible Solution to the Cosmological Lithium Problem
We explore a nuclear physics resolution to the discrepancy between the
predicted standard big-bang nucleosynthesis (BBN) abundance of 7Li and its
observational determination in metal-poor stars. The theoretical 7Li abundance
is 3-4 times greater than the observational values, assuming the
baryon-to-photon ratio, eta_wmap, determined by WMAP. The 7Li problem could be
resolved within the standard BBN picture if additional destruction of A=7
isotopes occurs due to new nuclear reaction channels or upward corrections to
existing channels. This could be achieved via missed resonant nuclear
reactions, which is the possibility we consider here. We find some potential
candidate resonances which can solve the lithium problem and specify their
required resonant energies and widths. For example, a 1^- or 2^- excited state
of 10C sitting at approximately 15.0 MeV above its ground state with an
effective width of order 10 keV could resolve the 7Li problem; the existence of
this excited state needs experimental verification. Other examples using known
states include 7Be+t \rightarrow 10B(18.80 MeV), and 7Be+d \rightarrow 9B(16.71
MeV). For all of these states, a large channel radius (a > 10 fm) is needed to
give sufficiently large widths. Experimental determination of these reaction
strengths is needed to rule out or confirm these nuclear physics solutions to
the lithium problem.Comment: 37 pages, 9 figures. Additional discussion of channel widths and
radii. Matches published versio
- …