33 research outputs found
Neuroprotective effects of the immunomodulatory drug FK506 in a model of HIV1-gp120 neurotoxicity.
BackgroundHIV-associated neurocognitive disorders (HAND) continue to be a common morbidity associated with chronic HIV infection. It has been shown that HIV proteins (e.g., gp120) released from infected microglial/macrophage cells can cause neuronal damage by triggering inflammation and oxidative stress, activating aberrant kinase pathways, and by disrupting mitochondrial function and biogenesis. Previous studies have shown that FK506, an immunophilin ligand that modulates inflammation and mitochondrial function and inhibits calcineurin, is capable of rescuing the neurodegenerative pathology in models of Parkinson's disease, Alzheimer's disease, and Huntington's disease. In this context, the main objective of this study was to evaluate if FK506 could rescue the neuronal degeneration and mitochondrial alterations in a transgenic (tg) animal model of HIV1-gp120 neurotoxicity.MethodsGFAP-gp120 tg mice were treated with FK506 and analyzed for neuropathology, behavior, mitochondrial markers, and calcium flux by two-photon microscopy.ResultsWe found that FK506 reduced the neuronal cell loss and neuro-inflammation in the gp120 tg mice. Moreover, while vehicle-treated gp120 tg mice displayed damaged mitochondria and increased neuro-inflammatory markers, FK506 rescued the morphological mitochondrial alterations and neuro-inflammation while increasing levels of optic atrophy 1 and mitofusin 1. By two-photon microscopy, calcium levels were not affected in the gp120 tg mice and no effects of FK506 were detected. However, at a functional level, FK506 ameliorated the gp120 tg mice hyperactivity in the open field.ConclusionsTogether, these results suggest that FK506 might be potentially neuroprotective in patients with HAND by mitigating inflammation and mitochondrial alterations
Recommended from our members
Tenofovir disoproxil fumarate induces peripheral neuropathy and alters inflammation and mitochondrial biogenesis in the brains of mice.
Mounting evidence suggests that antiretroviral therapy (ART) drugs may contribute to the prevalence of HIV-associated neurological dysfunction. The HIV envelope glycoprotein (gp120) is neurotoxic and has been linked to alterations in mitochondrial function and increased inflammatory gene expression, which are common neuropathological findings in HIV+ cases on ART with neurological disorders. Tenofovir disproxil fumarate (TDF) has been shown to affect neurogenesis in brains of mice and mitochondria in neurons. In this study, we hypothesized that TDF contributes to neurotoxicity by modulating mitochondrial biogenesis and inflammatory pathways. TDF administered to wild-type (wt) and GFAP-gp120 transgenic (tg) mice caused peripheral neuropathy, as indicated by nerve conduction slowing and thermal hyperalgesia. Conversely TDF protected gp120-tg mice from cognitive dysfunction. In the brains of wt and gp120-tg mice, TDF decreased expression of mitochondrial transcription factor A (TFAM). However, double immunolabelling revealed that TFAM was reduced in neurons and increased in astroglia in the hippocampi of TDF-treated wt and gp120-tg mice. TDF also increased expression of GFAP and decreased expression of IBA1 in the wt and gp120-tg mice. TDF increased tumor necrosis factor (TNF) α in wt mice. However, TDF reduced interleukin (IL) 1β and TNFα mRNA in gp120-tg mouse brains. Primary human astroglia were exposed to increasing doses of TDF for 24 hours and then analyzed for mitochondrial alterations and inflammatory gene expression. In astroglia, TDF caused a dose-dependent increase in oxygen consumption rate, extracellular acidification rate and spare respiratory capacity, changes consistent with increased metabolism. TDF also reduced IL-1β-mediated increases in IL-1β and TNFα mRNA. These data demonstrate that TDF causes peripheral neuropathy in mice and alterations in inflammatory signaling and mitochondrial activity in the brain
Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death.
Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity
Effects of HIV-1 TAT protein and methamphetamine exposure on visual discrimination and executive function in mice
Mild neurocognitive impairments are common in people with human immunodeficiency virus (HIV) infection. HIV-encoded proteins, such as trans-activator of transcription (TAT), contribute to neuropathology and cognitive function in medicated subjects. The combination of TAT and comorbid methamphetamine use may further impair neurocognitive function in HIV-positive individuals by affecting dopaminergic systems in the brain. The current study examined the effects of TAT protein expression and methamphetamine exposure on cognitive function and dopamine systems in mice. Transgenic mice with inducible brain expression of the TAT protein were exposed to a binge methamphetamine regimen. TAT expression was induced via a doxycycline-containing diet during the final stage of the regimen and maintained throughout cognitive testing. Learning and executive function were assessed using an operant visual discrimination protocol, with a strategy switch and reversal. TAT expression and methamphetamine exposure improved visual discrimination learning. Combined TAT expression and methamphetamine exposure increased perseverative errors during reversal learning. TAT expression altered reversal learning by improving early stage, but impairing late stage, learning. TAT expression was also associated with an increase in dopamine transporter expression in the caudate putamen. These results highlight that TAT expression and methamphetamine exposure likely affect a range of selective cognitive processes, with some potentially improving function under certain conditions
Predictors of worsening neuropathy and neuropathic pain after 12 years in people with HIV
OBJECTIVE: Distal sensory polyneuropathy (DSP) and neuropathic pain are important clinical concerns in virally suppressed people with HIV. We determined how these conditions evolved, what factors influenced their evolution, and their clinical impact.
METHODS: Ambulatory, community-dwelling HIV seropositive individuals were recruited at six research centers. Clinical evaluations at baseline and 12 years later determined neuropathy signs and distal neuropathic pain (DNP). Additional assessments measured activities of daily living and quality of life (QOL). Factors potentially associated with DSP and DNP progression included disease severity, treatment, demographics, and co-morbidities. Adjusted odds ratios were calculated for follow-up neuropathy outcomes.
RESULTS: Of 254 participants, 21.3% were women, 57.5% were non-white. Mean baseline age was 43.5 years. Polyneuropathy prevalence increased from 25.7% to 43.7%. Of 173 participants initially pain-free, 42 (24.3%) had incident neuropathic pain. Baseline risk factors for incident pain included unemployment (OR [95% CI], 5.86 [1.97, 17.4]) and higher baseline body mass index (BMI) (1.78 [1.03, 3.19] per 10-units). Participants with neuropathic pain at follow-up had significantly worse QOL and greater dependence in activities of daily living than those who remained pain-free.
INTERPRETATION: HIV DSP and neuropathic pain increased in prevalence and severity over 12 years despite high rates of viral suppression. The high burden of neuropathy included disability and poor life quality. However, substantial numbers remained pain-free despite clear evidence of neuropathy on exam. Protective factors included being employed and having a lower BMI. Implications for clinical practice include promotion of lifestyle changes affecting reversible risk factors