28,372 research outputs found

    Using Collider Event Topology in the Search for the Six-Jet Decay of Top Quark-Antiquark Pairs

    Get PDF
    We investigate the use of the event topology as a tool in the search for the six-jet decay of top-pair production in proton-antiproton collisions at 1.8 TeV. Modified Fox-Wolfram "shape" variables, H_i, are employed to help distinguish the top-pair signal from the ordinary QCD multi-jet background. The H's can be constructed directly from the calorimeter cells or from jets. Events are required to lie in a region of H-space defined by L_i < H_i < R_i for i=1,...,,6, where the left, L_i, and right, R_i, cuts are determined by a genetic algorithm (GA) procedure to maximize the signal over the square root of the background. We are able to reduce the background over the signal to less than a factor of 100 using purely topological methods without using jet multiplicity cuts and without the aid of b-quark tagging.Comment: LaTeX, 19 pages, 13 figure

    Rabbits and Rebounding Populations Bring Hope for Shrubland Birds

    Get PDF

    Better Jigs and Fixtures

    Get PDF

    Satellite versus ground-based estimates of burned area: a comparison between MODIS based burned area and fire agency reports over North America in 2007

    Get PDF
    North American wildfire management teams routinely assess burned area on site during firefighting campaigns; meanwhile, satellite observations provide systematic and global burned-area data. Here we compare satellite and ground-based daily burned area for wildfire events for selected large fires across North America in 2007 on daily timescales. In a sample of 26 fires across North America, we found the Global Fire Emissions Database Version 4 (GFED4) estimated about 80% of the burned area logged in ground-based Incident Status Summary (ICS-209) over 8-day analysis windows. Linear regression analysis found a slope between GFED and ICS-209 of 0.67 (with R = 0.96). The agreement between these data sets was found to degrade at short timescales (from R = 0.81 for 4-day to R = 0.55 for 2-day). Furthermore, during large burning days (> 3000 ha) GFED4 typically estimates half of the burned area logged in the ICS-209 estimates

    Pion and Kaon Production in Nucleon - Nucleon Collisions

    Get PDF
    Inclusive cross section for pion production in proton - proton collisions are calculated based on unintegrated parton distribution functions (uPDFs). In addition to purely gluonic terms the present approach includes also quark degrees of freedom. Phenomenological fragmentation functions from the literature are used. The new mechanisms are responsible for π+\pi^+ - π\pi^- asymmetry. In contrast to standard collinear approach, application of 2 \to 1 ktk_t - factorization approach can be extended towards much lower transverse momenta, both at mid and forward rapidity region. The results of the calculation are compared with SPS and RHIC data.Comment: a talk presented by Marta Tichoruk at the international conference MESON2006, Cracow, June 2006, 5 pages, 3 figure

    Sputtering of Oxygen Ice by Low Energy Ions

    Get PDF
    Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer solar system. These ices are continu- ously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2+, N2+ and O2+) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yield for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.Comment: to be published in Surface Science (2015

    Local dependence of ion temperature gradient on magnetic configuration, rotational shear and turbulent heat flux in MAST

    Full text link
    Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show that the inverse gradient scale length of the ion temperature R/LTi (normalized to the major radius R) has its strongest local correlation with the rotational shear and the pitch angle of the magnetic field (or, equivalently, an inverse correlation with q/{\epsilon}, the safety factor/the inverse aspect ratio). Furthermore, R/LTi is found to be inversely correlated with the gyro-Bohm-normalized local turbulent heat flux estimated from the density fluctuation level measured using a 2D Beam Emission Spectroscopy (BES) diagnostic. These results can be explained in terms of the conjecture that the turbulent system adjusts to keep R/LTi close to a certain critical value (marginal for the excitation of turbulence) determined by local equilibrium parameters (although not necessarily by linear stability).Comment: 6 pages, 3 figures, submitted to PR

    Transition to subcritical turbulence in a tokamak plasma

    Full text link
    Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.Comment: 16 pages, 5 figures, accepted to Journal of Plasma Physic

    Final state interactions and hadron quenching in cold nuclear matter

    Full text link
    I examine the role of final state interactions in cold nuclear matter in modifying hadron production on nuclear targets with leptonic or hadronic beams. I demonstrate the extent to which available experimental data in electron-nucleus collisions can give direct information on final state effects in hadron-nucleus and nucleus-nucleus collisions. For hadron-nucleus collisions, a theoretical estimate based on a parton energy loss model tested in lepton-nucleus collisions shows a large effect on mid-rapidity hadrons at fixed target experiments. At RHIC energy, the effect is large for negative rapidity hadrons, but mild at midrapidity. This final state cold hadron quenching needs to be taken into account in jet tomographic analysis of the medium created in nucleus-nucleus collisions.Comment: 14 pages, 7 figure
    corecore