18,877 research outputs found

    The Indirect Limit on the Standard Model Higgs Boson Mass from the Precision FERMILAB, LEP and SLD Data

    Get PDF
    Standard Model fits are performed on the most recent leptonic and b quark Z decay data from LEP and SLD, and FERMILAB data on top quark production, to obtain mtm_t and mHm_H. Poor fits are obtained, with confidence levels \simeq 2%. Removing the b quark data improves markedly the quality of the fits and reduces the 95% CL upper limit on mHm_H by \simeq 50 GeV.Comment: 6 pages 3 tables i figur

    The Effects of Dark Matter Decay and Annihilation on the High-Redshift 21 cm Background

    Get PDF
    The radiation background produced by the 21 cm spin-flip transition of neutral hydrogen at high redshifts can be a pristine probe of fundamental physics and cosmology. At z~30-300, the intergalactic medium (IGM) is visible in 21 cm absorption against the cosmic microwave background (CMB), with a strength that depends on the thermal (and ionization) history of the IGM. Here we examine the constraints this background can place on dark matter decay and annihilation, which could heat and ionize the IGM through the production of high-energy particles. Using a simple model for dark matter decay, we show that, if the decay energy is immediately injected into the IGM, the 21 cm background can detect energy injection rates >10^{-24} eV cm^{-3} sec^{-1}. If all the dark matter is subject to decay, this allows us to constrain dark matter lifetimes <10^{27} sec. Such energy injection rates are much smaller than those typically probed by the CMB power spectra. The expected brightness temperature fluctuations at z~50 are a fraction of a mK and can vary from the standard calculation by up to an order of magnitude, although the difference can be significantly smaller if some of the decay products free stream to lower redshifts. For self-annihilating dark matter, the fluctuation amplitude can differ by a factor <2 from the standard calculation at z~50. Note also that, in contrast to the CMB, the 21 cm probe is sensitive to both the ionization fraction and the IGM temperature, in principle allowing better constraints on the decay process and heating history. We also show that strong IGM heating and ionization can lead to an enhanced H_2 abundance, which may affect the earliest generations of stars and galaxies.Comment: submitted to Phys Rev D, 14 pages, 8 figure

    Strategy towards Mirror-fermion Signatures

    Get PDF
    The existence of mirror fermions interacting strongly under a new gauge group and having masses near the electroweak scale has been recently proposed as a viable alternative to the standard-model Higgs mechanism. The main purpose of this work is to investigate which specific experimental signals are needed to clearly differentiate the mirror-fermion model from other new-physics models. In particular, the case is made for a future large lepton collider with c.o.m. energies of roughly 4 TeV or higher.Comment: 30 Latex pages, 2 postscript figure

    Laser-induced fluorescence studies of HfF+ produced by autoionization

    Get PDF
    Autoionization of Rydberg states of HfF, prepared using the optical-optical double resonance (OODR) technique, holds promise to create HfF+ in a particular Zeeman level of a rovibronic state for an electron electric dipole moment (eEDM) search. We characterize a vibronic band of Rydberg HfF at 54 cm-1 above the lowest ionization threshold and directly probe the state of the ions formed from this vibronic band by performing laser-induced fluorescence (LIF) on the ions. The Rydberg HfF molecules show a propensity to decay into only a few ion rotational states of a given parity and are found to preserve their orientation qualitatively upon autoionization. We show empirically that we can create 30% of the total ion yield in a particular |J+,M+> state and present a simplified model describing autoionization from a given Rydberg state that assumes no angular dynamics.Comment: 8 pages, 5 figure

    Textural variations in Neogene pelagic carbonate ooze at DSDP Site 593, southern Tasman Sea, and their paleoceanographic implications

    Get PDF
    Changes in Neogene sediment texture in pelagic carbonate-rich oozes on the Challenger Plateau, southern Tasman Sea, are used to infer changes in depositional paleocurrent velocities. The most obvious record of textural change is in the mud:sand ratio. Increases in the sand content are inferred to indicate a general up-core trend towards increasing winnowing of sediments resulting from increasing flow velocity of Southern Component Intermediate Water (SCIW), the forerunner of Antarctic Intermediate Water. In particular, the intervals c. 19-14.5 Ma, c. 9.5-8 Ma, and after 5 Ma are suggested to be times of increased SCIW velocity and strong sediment winnowing. Within the mud fraction, the fine silt to coarse clay sizes from 15.6 to 2 µm make the greatest contribution to the sediments and are composed of nannofossil plates. During extreme winnowing events it is the fine silt to very coarse clay material (13-3 µm) within this range that is preferentially removed, suggesting the 10 µm cohesive silt boundary reported for siliciclastic sediments does not apply to calcitic skeletal grains. The winnowed sediment comprises coccolithophore placoliths and spheres, represented by a mode at 4-7 µm. Further support for seafloor winnowing is gained from the presence in Hole 593 of a condensed sedimentary section from c. 18 to 14 Ma where the sand content increases to c. 20% of the bulk sample. Associated with the condensed section is a 6 m thick orange unit representing sediments subjected to particularly oxygen-rich, late early to early middle Miocene SCIW. Together these are inferred to indicate increased SCIW velocity resulting in winnowed sediment associated with faster arrival of oxygen-rich surface water subducted to form SCIW. Glacial development of Antarctica has been recorded from many deep-sea sites, with extreme glacials providing the mechanism to increase watermass flow. Miocene glacial zones Mi1b-Mi6 are identified in an associated oxygen isotope record from Hole 593, and correspond with times of particularly invigorated paleocirculation, bottom winnowing, and sediment textural changes
    corecore