20,876 research outputs found
Comets, carbonaceous chondrites, and interstellar clouds: Condensation of carbon
Comets, carbonaceous chondrites, and interstellar clouds are discussed in relation to information on interstellar dust. The formation and presence of carbon in stars, comets, and meteorites is investigated. The existence of graphite in the interstellar medium, though it is predicted from thermodynamic calculations, is questioned and the form of carbon contained in comets is considered
Study of the atmospheric conditions affecting infrared astronomical measurements at White Mountain, California
Measurements are described of atmospheric conditions affecting astronomical observations at White Mountain, California. Measurements were made at more than 1400 times spaced over more than 170 days at the Summit Laboratory and a small number of days at the Barcroft Laboratory. The recorded quantities were ten micron sky noise and precipitable water vapor, plus wet and dry bulb temperatures, wind speed and direction, brightness of the sky near the sun, fisheye lens photographs of the sky, description of cloud cover and other observable parameters, color photographs of air pollution astronomical seeing, and occasional determinations of the visible light brightness of the night sky. Measurements of some of these parameters have been made for over twenty years at the Barcroft and Crooked Creek Laboratories, and statistical analyses were made of them. These results and interpretations are given. The bulk of the collected data are statistically analyzed, and disposition of the detailed data is described. Most of the data are available in machine readable form. A detailed discussion of the techniques proposed for operation at White Mountain is given, showing how to cope with the mountain and climatic problems
Relativistic Precessing Jets and Cosmological Gamma Ray Bursts
We discuss the possibility that gamma-ray bursts may result from cosmological
relativistic blob emitting neutron star jets that precess past the line of
sight. Beaming reduces the energy requirements, so that the jet emission can
last longer than the observed burst duration. One precession mode maintains a
short duration time scale, while a second keeps the beam from returning to the
line of sight, consistent with the paucity of repeaters. The long life of these
objects reduces the number required for production as compared to short lived
jets. Blobs can account for the time structure of the bursts. Here we focus
largely on kinematic and time scale considerations of beaming, precession, and
blobs--issues which are reasonably independent of the acceleration and jet
collimation mechanisms. We do suggest that large amplitude electro-magnetic
waves could be a source of blob acceleration.Comment: 15 pages, plain TeX, accepted to ApJ
The bispectrum of redshifted 21-cm fluctuations from the dark ages
Brightness-temperature fluctuations in the redshifted 21-cm background from
the cosmic dark ages are generated by irregularities in the gas-density
distribution and can then be used to determine the statistical properties of
density fluctuations in the early Universe. We first derive the most general
expansion of brightness-temperature fluctuations up to second order in terms of
all the possible sources of spatial fluctuations. We then focus on the
three-point statistics and compute the angular bispectrum of
brightness-temperature fluctuations generated prior to the epoch of hydrogen
reionization. For simplicity, we neglect redshift-space distortions. We find
that low-frequency radio experiments with arcmin angular resolution can easily
detect non-Gaussianity produced by non-linear gravity with high signal-to-noise
ratio. The bispectrum thus provides a unique test of the gravitational
instability scenario for structure formation, and can be used to measure the
cosmological parameters. Detecting the signature of primordial non-Gaussianity
produced during or right after an inflationary period is more challenging but
still possible. An ideal experiment limited by cosmic variance only and with an
angular resolution of a few arcsec has the potential to detect primordial
non-Gaussianity with a non-linearity parameter of f_NL ~ 1. Additional sources
of error as weak lensing and an imperfect foreground subtraction could severely
hamper the detection of primordial non-Gaussianity which will benefit from the
use of optimal estimators combined with tomographic techniques.Comment: 15 pages, 4 figures, revised version accepted for publication in ApJ
(contains an improved discussion of gas temperature fluctuations
- …