146 research outputs found

    Mitigating Architectural Mismatch During the Evolutionary Synthesis of Deep Neural Networks

    Get PDF
    Evolutionary deep intelligence has recently shown great promise for producing small, powerful deep neural network models via the organic synthesis of increasingly efficient architectures over successive generations. Existing evolutionary synthesis processes, however, have allowed the mating of parent networks independent of architectural alignment, resulting in a mismatch of network structures. We present a preliminary study into the effects of architectural alignment during evolutionary synthesis using a gene tagging system. Surprisingly, the network architectures synthesized using the gene tagging approach resulted in slower decreases in performance accuracy and storage size; however, the resultant networks were comparable in size and performance accuracy to the non-gene tagging networks. Furthermore, we speculate that there is a noticeable decrease in network variability for networks synthesized with gene tagging, indicating that enforcing a like-with-like mating policy potentially restricts the exploration of the search space of possible network architectures.Comment: 5 page

    Assessing Architectural Similarity in Populations of Deep Neural Networks

    Get PDF
    Evolutionary deep intelligence has recently shown great promise for producing small, powerful deep neural network models via the synthesis of increasingly efficient architectures over successive generations. Despite recent research showing the efficacy of multi-parent evolutionary synthesis, little has been done to directly assess architectural similarity between networks during the synthesis process for improved parent network selection. In this work, we present a preliminary study into quantifying architectural similarity via the percentage overlap of architectural clusters. Results show that networks synthesized using architectural alignment (via gene tagging) maintain higher architectural similarities within each generation, potentially restricting the search space of highly efficient network architectures.Comment: 3 pages. arXiv admin note: text overlap with arXiv:1811.0796

    Efficient Deep Feature Learning and Extraction via StochasticNets

    Full text link
    Deep neural networks are a powerful tool for feature learning and extraction given their ability to model high-level abstractions in highly complex data. One area worth exploring in feature learning and extraction using deep neural networks is efficient neural connectivity formation for faster feature learning and extraction. Motivated by findings of stochastic synaptic connectivity formation in the brain as well as the brain's uncanny ability to efficiently represent information, we propose the efficient learning and extraction of features via StochasticNets, where sparsely-connected deep neural networks can be formed via stochastic connectivity between neurons. To evaluate the feasibility of such a deep neural network architecture for feature learning and extraction, we train deep convolutional StochasticNets to learn abstract features using the CIFAR-10 dataset, and extract the learned features from images to perform classification on the SVHN and STL-10 datasets. Experimental results show that features learned using deep convolutional StochasticNets, with fewer neural connections than conventional deep convolutional neural networks, can allow for better or comparable classification accuracy than conventional deep neural networks: relative test error decrease of ~4.5% for classification on the STL-10 dataset and ~1% for classification on the SVHN dataset. Furthermore, it was shown that the deep features extracted using deep convolutional StochasticNets can provide comparable classification accuracy even when only 10% of the training data is used for feature learning. Finally, it was also shown that significant gains in feature extraction speed can be achieved in embedded applications using StochasticNets. As such, StochasticNets allow for faster feature learning and extraction performance while facilitate for better or comparable accuracy performances.Comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:1508.0546

    Multi-Neighborhood Convolutional Networks

    Get PDF
    We explore the role of scale for improved feature learning in convolutionalnetworks. We propose multi-neighborhood convolutionalnetworks, designed to learn image features at different levels ofdetail. Utilizing nonlinear scale-space models, the proposed multineighborhoodmodel can effectively capture fine-scale image characteristics(i.e., appearance) using a small-size neighborhood, whilecoarse-scale image structures (i.e., shape) are detected througha larger neighborhood. The experimental results demonstrate thesuperior performance of the proposed multi-scale multi-neighborhoodmodels over their single-scale counterparts

    CLVOS23: A Long Video Object Segmentation Dataset for Continual Learning

    Full text link
    Continual learning in real-world scenarios is a major challenge. A general continual learning model should have a constant memory size and no predefined task boundaries, as is the case in semi-supervised Video Object Segmentation (VOS), where continual learning challenges particularly present themselves in working on long video sequences. In this article, we first formulate the problem of semi-supervised VOS, specifically online VOS, as a continual learning problem, and then secondly provide a public VOS dataset, CLVOS23, focusing on continual learning. Finally, we propose and implement a regularization-based continual learning approach on LWL, an existing online VOS baseline, to demonstrate the efficacy of continual learning when applied to online VOS and to establish a CLVOS23 baseline. We apply the proposed baseline to the Long Videos dataset as well as to two short video VOS datasets, DAVIS16 and DAVIS17. To the best of our knowledge, this is the first time that VOS has been defined and addressed as a continual learning problem

    Machine Learning Challenges of Biological Factors in Insect Image Data

    Full text link
    The BIOSCAN project, led by the International Barcode of Life Consortium, seeks to study changes in biodiversity on a global scale. One component of the project is focused on studying the species interaction and dynamics of all insects. In addition to genetically barcoding insects, over 1.5 million images per year will be collected, each needing taxonomic classification. With the immense volume of incoming images, relying solely on expert taxonomists to label the images would be impossible; however, artificial intelligence and computer vision technology may offer a viable high-throughput solution. Additional tasks including manually weighing individual insects to determine biomass, remain tedious and costly. Here again, computer vision may offer an efficient and compelling alternative. While the use of computer vision methods is appealing for addressing these problems, significant challenges resulting from biological factors present themselves. These challenges are formulated in the context of machine learning in this paper.Comment: 4 pages, 3 figures. Submitted to the Journal of Computational Vision and Imaging System

    Impact of Training Images on Radiometric Compensation

    Get PDF
    The increasing availability of both high-resolution projectors andimperfect displays make radiometric correction an essential componentin all modern projection systems. Particularly, projectingin casual locations, such as classrooms, open areas and homes,calls for the development of radiometric correction techniques thatare fully automatic and deal with display imperfections in real-time.This paper reviews the current radiometric compensation algorithmsand discusses the influence of different training images on theirperformance
    • …
    corecore