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Abstract

Evolutionary deep intelligence has recently shown great promise
for producing small, powerful deep neural network models via the
organic synthesis of increasingly efficient architectures over suc-
cessive generations. Existing evolutionary synthesis processes,
however, have allowed the mating of parent networks independent
of architectural alignment, resulting in a mismatch of network struc-
tures. We present a preliminary study into the effects of architec-
tural alignment during evolutionary synthesis using a gene tagging
system. Surprisingly, the network architectures synthesized using
the gene tagging approach resulted in slower decreases in perfor-
mance accuracy and storage size; however, the resultant networks
were comparable in size and performance accuracy to the non-
gene tagging networks. Furthermore, we speculate that there is a
noticeable decrease in network variability for networks synthesized
with gene tagging, indicating that enforcing a like-with-like mating
policy potentially restricts the exploration of the search space of
possible network architectures.

1 Introduction

Deep neural networks (DNNs) [3, 1, 2, 4] have recently garnered
widespread interest due to their demonstrated ability to improve
state-of-the-art performance in many challenging areas of research.
This boost in performance, however, has largely been attributed
to increasingly large and complex network architectures, resulting
in storage and memory requirements beyond the resources avail-
able in practical scenarios. As such, methods for producing highly
efficient DNNs have been developed to reduce the memory and
computational needs while maintaining performance accuracy.

Inspired by nature, Shafiee et al. [5] introduced evolutionary
deep intelligence as a biologically-motivated alternative to com-
pressing existing DNNs directly by allowing networks to organi-
cally synthesize new and increasingly efficient network architec-
tures over successive generations. Shafiee et al. proposed a
probabilistic framework that models the genetic encoding of net-
works and simulated environmental factors as probability distribu-
tions, and mimicked evolutionary mechanisms using: i) heredity, ii)
natural selection, and iii) random mutation.

While existing evolutionary deep intelligence methods have lever-
aged asexual evolutionary synthesis [5, 6, 7, 8, 9] and m-parent
sexual evolutionary synthesis [10, 11, 12], the evolutionary synthe-
sis process combines architectural structures sequentially regard-
less of their relative positions in each parent network. As such, cur-
rent evolutionary deep intelligence methods have employed syn-
thesis processes that mate parent networks independent of archi-
tectural alignment, resulting in a mismatch of network structures.

In this paper, we present a preliminary study into the effects
of architectural alignment during evolutionary synthesis via the in-
troduction of a gene tagging system. Gene tagging is explored
within the context of m-parent sexual evolutionary synthesis and
evaluated over a range of environmental resource models. The
gene tagging system allows for the proper alignment of architec-
tural structures that originated from the same location in the an-
cestor network, and enforces a like-with-like mating policy.

2 Methods

In this study, we modify the existing m-parent evolutionary synthe-
sis approach [11] to investigate the efficacy of structural alignment
and its effect on the synthesis of new network architectures across
a range of simulated environmental resource models. This is ex-
plored via the incorporation (i.e., structurally aligned) or omission
(i.e., structurally mismatched) of gene tagging during the evolu-
tionary synthesis process. At each generation, m parent networks
from the preceding generation are structurally aligned using gene
tagging and combined via a like-with-like mating function to synthe-
size new offspring networks.

2.1 m-Parent Evolutionary Synthesis

Let the network architecture be formulated as H(N,S), where N
is the set of possible neurons and S denotes the set of possible
synapses in the network. Each neuron n j ∈ N is connected to
neuron nk ∈ N via a set of synapses s̄ ⊂ S, such that the synaptic
connectivity s j ∈ S has an associated w j ∈W to denote the con-
nection’s strength. In the seminal evolutionary deep intelligence
paper [5], the synthesis probability P(Hg|Hg−1,Rg) of a new net-
work at generation g is approximated by the synaptic probability
P(Sg|Wg−1,Rg) to emulate heredity through the generations of net-
works. P(Hg|Hg−1,Rg) is also conditional on an environmental fac-
tor model Rg to imitate natural selection via simulated environmen-
tal resources. The synthesis probability is formulated as:

P(Hg|Hg−1,Rg)' P(Sg|Wg−1,Rg). (1)

Generalizing to m-parent evolutionary synthesis [11], a newly
synthesized network Hg(i) can be dependent on a subset of all
previously synthesized networks HGi , and is formulated as

P(Hg(i)|HGi ,Rg(i))' P(Sg(i)|WGi ,Rg(i)) (2)

where the set of network indices Gi corresponds to the set of previ-
ous networks on which Hg(i) is dependent, and g(i) represents the
generation number corresponding to the ith network. Note that in
the general case, the number of networks in subset HGi and the
range of generational dependency g(Gi) is only constrained by the
number and generational range of already synthesized networks.

The synthesis probability to combine the cluster and synapse
probabilities of m parent networks HGi is represented by some
cluster-level mating function Mc(·) and some synapse-level mat-
ing function Ms(·):

P(Hg(i)|HGi ,Rg(i)) = ∏
C∈C

[
P(sg(i),C|Mc(WHGi

),Rc
g(i))·

∏
j∈C

P(sg(i), j|Ms(wHGi , j
),Rs

g(i))
]
. (3)

These mating functions are formulated using an intersection-based
mating policy [11], i.e.,:

Mc(WHGi
) =

m

∏
k=1

αc,kWHk (4)

Ms(wHGi , j
) =

m

∏
k=1

αs,kwHk , j (5)

where WHk represents the cluster’s synaptic strength for the kth

parent network Hk ∈HGi . Similarly, wHk , j represents the synaptic
strength of a synapse j within cluster c for the kth parent network
Hk ∈HGi .

2.2 Mitigating Architecture Mismatch via Gene Tagging

To encourage like-with-like mating during evolutionary synthesis,
this study introduces a gene tagging system to enforce structural
alignment, i.e., only mating architectural clusters originating from
the same location in the ancestor network. As such, the cluster-
level and synapse-level mating functions proposed in [11] are re-
formulated as follows:

Mc(WHGi
) =

Kc

∏
k=1

αc,kWHk (6)

Ms(wHGi , j
) =

Kc

∏
k=1

αs,kwHk , j (7)
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Fig. 1: Performance accuracy (left) and storage size (right) for 5-parent evolutionary synthesis with gene tagging (top row) and no gene
tagging (bottom row) using various environmental factor models. Plots best viewed in colour.

where Kc is the subset of parent networks with existing architec-
tural clusters corresponding to a single gene tagged cluster c ∈C,
and C is the set of clusters that exists in Hg(i).

This study also introduces a parameter-based lower bound on
the subset of parent networks with existing architectural clusters
Kc. Prior studies [10, 11, 12] employed an intersection-based mat-
ing policy where a cluster was synthesized only if the cluster ex-
isted within all m parent networks (i.e., Kc = m). To allow for more
flexibility within the m-parent evolutionary synthesis, we propose a
%POP parameter to control the proportion of parent network ar-
chitectures that must contain any given cluster during evolutionary
synthesis. As such, only clusters that exist within the specified pro-
portion of parent networks are synthesized (i.e., m%POP≤Kc≤m),
and the intersection-based policy can be achieved using %POP= 1.

3 Results

3.1 Experimental Setup

The effect of structural alignment during the m-parent evolution-
ary synthesis was evaluated using 10% of the MNIST [13] hand-
written digits dataset (Figure 2) to increase the training speed of
the synthesized network architectures and increase the inherently
low intra-class variation within the MNIST dataset. For this prelim-
inary study, 5-parent evolutionary synthesis and a %POP of 60%
was used, and HGi was restricted to networks in the immediately
preceding generation, i.e., for a newly synthesized network Hg(i),
the m = 5 parent networks in HGi are from generation g(i)−1.

The first generation ancestor network was trained using the
LeNet-5 architecture [14], and the synthesized offspring networks
were assessed using performance accuracy on the MNIST dataset
and storage size (representative of the architectural efficiency of
a network) of the networks with respect to the computational time

Fig. 2: Sample images from the MNIST hand-written digits
dataset [13].

required. Similar to [12], each filter was considered as a synap-
tic cluster in the multi-factor synapse probability model, and the
cluster-level environmental factor model Rc

g(i) and the synapse-
level environmental factor model Rs

g(i) were varied together from
50% to 95% at 5% increments, i.e.,:

Rc
g(i),R

s
g(i) = {50,55,60,65,70,75,80,85,90,95}% (8)

The synthesized networks were assessed using performance ac-
curacy on the MNIST dataset and storage size (representative of
the architectural efficiency of a network) of the networks with re-
spect to the computational time required.



Fig. 3: Performance accuracy as a function of storage size for
5-parent sexual evolutionary synthesis using various environmen-
tal factor models. Networks synthesized using gene tagging (di-
amond) show minimal to no noticeable difference relative to net-
works synthesized without gene tagging (round) in terms of main-
taining performance accuracy while decreasing storage size. Plots
best viewed in colour.

3.2 Experimental Results

Figure 1 shows the performance accuracy and storage size for 5-
parent evolutionary synthesis with gene tagging (top row) and no
gene tagging (bottom row) given various cluster-level and synapse-
level environmental factor models. The incorporation of gene tag-
ging resulted in a more gradual decrease in both performance ac-
curacy and storage size relative to computational time, while the
omission of gene tagging produced network architectures with more
rapidly decreasing performance accuracy and storage size. Note
that the bottom plateau in performance accuracy is at 10% akin to
random guessing, as the MNIST dataset consists of 10 classes of
handwritten digits.

While there is no inherent limit in network reduction when using
the evolutionary deep intelligence approach, Figure 1 shows that
there are natural plateaus in network storage size, particularly with
the higher environmental factor models, i.e., environmental factor
models of 80%, 85%, and 95%. In addition, note that these plateaus
in network storage size tend to occur more when synthesizing net-
works using gene tagging.

Figure 3 shows performance accuracy as a function of stor-
age size for 5-parent sexual evolutionary synthesis using various
cluster-level and synapse-level environmental factor models, where
the best synthesized networks are closest to the top left corner, i.e.,
high performance accuracy and low storage size. Networks syn-
thesized using gene tagging (diamond points) appear to be mini-
mally worse relative to networks synthesized without gene tagging
(round points) in terms of maintaining performance accuracy while
decreasing storage size.

4 Discussion

In this work, we presented a preliminary study into the effects of
architectural alignment during evolutionary synthesis via the intro-
duction of a gene tagging system to enforce a like-with-like mating
policy. Surprisingly, the network architectures synthesized using
the gene tagging approach resulted in slower decreases in perfor-
mance accuracy and storage size. However, the resultant networks
were comparable in storage size and performance accuracy to the
networks synthesized without gene tagging.

We speculate that the use of gene tagging inherently decreases
overall network variability across the synthesized network archi-
tectures, indicating that enforcing a like-with-like mating policy via
the use of gene tagging potentially restricts the exploration of the
search space of possible network architectures. As a result, syn-
thesized networks may fail to achieve the same increases in archi-
tectural efficiency as architectures synthesized with more random
approaches. Future work includes further investigation into the ef-

fects of architectural alignment via the use of different %POPs and
varying the number of parents networks m, and the exploration of
how gene tagging potentially affects the architectural variability in
synthesized networks.
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