11 research outputs found
Automatically Scaling Multi-Tenant Machine Learning
Generally, the present disclosure is directed to optimizing use of computing resources in a system. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict task allocation for a job serving a plurality of machine-learned models based on current system state and queries per second (QPS) data for the plurality of models. Alternatively, the tasks can be allocated according to one or more rules (e.g., a new task is allocated to a job until the compute usage for the job falls below a scaling threshold). Thus, the systems and methods of the present disclosure are able to efficiently serve a mix of high-QPS and low-QPS machine-learned models at low latency with minimal waste of compute resources (e.g., CPU, GPU, TPU, etc.) and memory (e.g., RAM)
Elastic multi-resolution model-serving to compute inferences
Machine-learning models are consuming an increasing fraction of the world\u27s computing resources. The cost of computing inferences with some machine-learning models is extremely high. Provisioning computing resources for peak performance, e.g., high availability and quality of service, entails the creation of headroom for traffic spikes (increases in demand) and preparing for the possibility of outages (decreases in capacity). Executing computer applications that utilize machine-learning models, also known as machine-learned models, can require significant capital and operational expenses.
This disclosure describes techniques to optimize use of computing resources for a machine-learning model. Multi-resolution models and/or models with recurrence are utilized. These models can compute inferences to varying degrees of quality (resolution). The multi-resolution models are served in an elastic manner such that a model of a resolution that fits both the available computing resources and is utilized to compute inferences
Understanding HTML with Large Language Models
Large language models (LLMs) have shown exceptional performance on a variety
of natural language tasks. Yet, their capabilities for HTML understanding --
i.e., parsing the raw HTML of a webpage, with applications to automation of
web-based tasks, crawling, and browser-assisted retrieval -- have not been
fully explored. We contribute HTML understanding models (fine-tuned LLMs) and
an in-depth analysis of their capabilities under three tasks: (i) Semantic
Classification of HTML elements, (ii) Description Generation for HTML inputs,
and (iii) Autonomous Web Navigation of HTML pages. While previous work has
developed dedicated architectures and training procedures for HTML
understanding, we show that LLMs pretrained on standard natural language
corpora transfer remarkably well to HTML understanding tasks. For instance,
fine-tuned LLMs are 12% more accurate at semantic classification compared to
models trained exclusively on the task dataset. Moreover, when fine-tuned on
data from the MiniWoB benchmark, LLMs successfully complete 50% more tasks
using 192x less data compared to the previous best supervised model. Out of the
LLMs we evaluate, we show evidence that T5-based models are ideal due to their
bidirectional encoder-decoder architecture. To promote further research on LLMs
for HTML understanding, we create and open-source a large-scale HTML dataset
distilled and auto-labeled from CommonCrawl
PaLM: Scaling Language Modeling with Pathways
Large language models have been shown to achieve remarkable performance
across a variety of natural language tasks using few-shot learning, which
drastically reduces the number of task-specific training examples needed to
adapt the model to a particular application. To further our understanding of
the impact of scale on few-shot learning, we trained a 540-billion parameter,
densely activated, Transformer language model, which we call Pathways Language
Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML
system which enables highly efficient training across multiple TPU Pods. We
demonstrate continued benefits of scaling by achieving state-of-the-art
few-shot learning results on hundreds of language understanding and generation
benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough
performance, outperforming the finetuned state-of-the-art on a suite of
multi-step reasoning tasks, and outperforming average human performance on the
recently released BIG-bench benchmark. A significant number of BIG-bench tasks
showed discontinuous improvements from model scale, meaning that performance
steeply increased as we scaled to our largest model. PaLM also has strong
capabilities in multilingual tasks and source code generation, which we
demonstrate on a wide array of benchmarks. We additionally provide a
comprehensive analysis on bias and toxicity, and study the extent of training
data memorization with respect to model scale. Finally, we discuss the ethical
considerations related to large language models and discuss potential
mitigation strategies
TALM: Tool Augmented Language Models
Transformer based language models (LMs) demonstrate increasing performance
with scale across a wide variety of tasks. Scale alone however cannot enable
models to solve tasks that require access to ephemeral, changing, or private
data that was unavailable at training time. Many useful tasks may also benefit
from LMs being able to access APIs that read or modify state. In this work, we
present Tool Augmented Language Models (TALM), combining a text-only approach
to augment language models with non-differentiable tools, and an iterative
"self-play" technique to bootstrap performance starting from few tool
demonstrations. TALM exhibits strong performance on both a knowledge-heavy QA
task and a reasoning oriented math task with simple tools. At a given model
scale, TALM significantly outperforms non-augmented LMs. We further demonstrate
that TALM successfully performs out-of-distribution inferences on both QA and
math tasks, where non-augmented LMs fail. Our results suggest that Tool
Augmented Language Models are a promising direction to enrich LMs'
capabilities, with less dependence on scale
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting