308 research outputs found

    Does the mode of delivery affect mathematics examination results?

    Get PDF
    At present most examinations are delivered on paper but there is a growing trend in many subjects to deliver some or part of these examinations by computer. It is therefore important to know whether there are any differences in the results obtained by candidates sitting examinations taken by computer compared with those obtained by candidates sitting conventional examinations using pen and paper. The purpose of this article is to describe the outcome of a pilot study designed to∗ investigate possible causes of any differences in results from the use of different modes of delivery in a mathematics examination. One outcome of this study was that the process of translating examination questions into a format required for use on the computer (but keeping this as a pen and paper test) can have a significant effect on examination results. However, the main conclusion is that changing the medium only has no effect on the results in mathematics examinations

    Issues of partial credit in mathematical assessment by computer

    Get PDF
    The CALM Project for Computer Aided Learning in Mathematics has operated at Heriot‐Watt University since 1985. From the beginning CALM has featured assessment in its programs (Beevers, Cherry, Foster and McGuire, 1991), and enabled both students and teachers to view progress in formative assessment The computer can play a role in at least four types of assessment: diagnostic, self‐test, continuous and grading assessment. The TLTP project Mathwise employs the computer in three of these roles. In 1994 CALM reported on an educational experiment in which the computer was used for the first time to grade, in part, the learning of a large class of service mathematics students (Beevers, McGuire, Stirling and Wild ,1995), using the Mathwise assessment template. At that time the main issues identified were those of ‘partial credit’ and communication between the student and the computer. These educational points were addressed in the next phase of the CALM Project in which the commercial testing program Interactive PastPapers was developed. The main aim of this paper is to describe how Interactive Past Papers has been able to incorporate some approaches to partial credit which has helped to alleviate student worries on these issues. Background information on other features in Interactive Past Papers is also included to provide context for the discussion

    Coral-reef-derived dimethyl sulfide and the climatic impact of the loss of coral reefs

    Get PDF
    Dimethyl sulfide (DMS) is a naturally occurring aerosol precursor gas which plays an important role in the global sulfur budget, aerosol formation and climate. While DMS is produced predominantly by phytoplankton, recent observational literature has suggested that corals and their symbionts produce a comparable amount of DMS, which is unaccounted for in models. It has further been hypothesised that the coral reef source of DMS may modulate regional climate. This hypothesis presents a particular concern given the current threat to coral reefs under anthropogenic climate change. In this paper, a global climate model with online chemistry and aerosol is used to explore the influence of coral-reef-derived DMS on atmospheric composition and climate. A simple representation of coral-reef-derived DMS is developed and added to a common DMS surface water climatology, resulting in an additional flux of 0.3 Tg yr−1 S, or 1.7 % of the global sulfur flux from DMS. By comparing the differences between both nudged and free-running ensemble simulations with and without coral-reef-derived DMS, the influence of coral-reef-derived DMS on regional climate is quantified. In the Maritime Continent–Australian region, where the highest density of coral reefs exists, a small decrease in nucleation- and Aitken-mode aerosol number concentration and mass is found when coral reef DMS emissions are removed from the system. However, these small responses are found to have no robust effect on regional climate via direct and indirect aerosol effects. This work emphasises the complexities of the aerosol–climate system, and the limitations of current modelling capabilities are highlighted, in particular surrounding convective responses to changes in aerosol. In conclusion, we find no robust evidence that coral-reef-derived DMS influences global and regional climate

    Genomic Organization, Splice Variants and Expression of CGMl, a CD66-related Member of the Carcinoembryonic Antigen Gene Family

    Get PDF
    The tumor marker carcinoembryonic antigen (CEA) belongs to a family of proteins which are composed of one immunogiobulin variable domain and a varying number of immunoglobulin constant-like domains. Most of the membrane-bound members, which are anchored either by a glycosylphosphatidylinositol moiety or a transmembrane domain, have been shown to convey cell adhesion in vitro. Here we describe two splice variants of CGMI. a transmembrane member of the CEA family without immunoglobulin constant.like domains. CGM1a and CGM1c contain cytopiasmic domains of 71 and 31 amino acids, respectively, The cytoplasmic region of CGM1a is encoded by four exons (Cyt1-Cyt4). Differential splicing of the Cyt1 exon (53 bp)..

    Assessing the cloud radiative bias at Macquarie Island in the ACCESS-AM2 model

    Get PDF
    As a long-standing problem in climate models, large positive shortwave radiation biases exist at the surface over the Southern Ocean, impacting the accurate simulation of sea surface temperature, atmospheric circulation, and precipitation. Underestimations of low-level cloud fraction and liquid water content are suggested to predominantly contribute to these radiation biases. Most model evaluations for radiation focus on summer and rely on satellite products, which have their own limitations. In this work, we use surface-based observations at Macquarie Island to provide the first long-term, seasonal evaluation of both downwelling surface shortwave and longwave radiation in the Australian Community Climate and Earth System Simulator Atmosphere-only Model version 2 (ACCESS-AM2) over the Southern Ocean. The capacity of the Clouds and the Earth’s Radiant Energy System (CERES) product to simulate radiation is also investigated. We utilize the novel lidar simulator, the Automatic Lidar and Ceilometer Framework (ALCF), and all-sky cloud camera observations of cloud fraction to investigate how radiation biases are influenced by cloud properties. Overall, we find an overestimation of +9.5±33.5 W m−2 for downwelling surface shortwave radiation fluxes and an underestimation of -2.3±13.5 W m−2 for downwelling surface longwave radiation in ACCESS-AM2 in all-sky conditions, with more pronounced shortwave biases of +25.0±48.0 W m−2 occurring in summer. CERES presents an overestimation of +8.0±18.0 W m−2 for the shortwave and an underestimation of -12.1±12.2 W m−2 for the longwave in all-sky conditions. For the cloud radiative effect (CRE) biases, there is an overestimation of +4.8±28.0 W m−2 in ACCESS-AM2 and an underestimation of -7.9±20.9 W m−2 in CERES. An overestimation of downwelling surface shortwave radiation is associated with an underestimated cloud fraction and low-level cloud occurrence. We suggest that modeled cloud phase is also having an impact on the radiation biases. Our results show that the ACCESS-AM2 model and CERES product require further development to reduce these radiation biases not just in shortwave and in all-sky conditions, but also in longwave and in clear-sky conditions.</p
    corecore