5 research outputs found

    One dimensional potentials in q space

    Full text link
    We study the one dimensional potentials in q space and the new features that arise. In particular we show that the probability of tunneling of a particle through a barrier or potential step is less than the one of the same particle with the same energy in ordinary space which is somehow unexpected. We also show that the tunneling time for a particle in q space is less than the one of the same particle in ordinary space.Comment: 10 pages, LaTeX2e, no figur

    q-Deformed Conformal Quantum Mechanics

    Get PDF
    We construct a q-deformed version of the conformal quantum mechanics model of de Alfaro, Fubini and Furlan for which the deformation parameter is complex and the unitary time evolution of the system is preserved. We also study differential calculus on the q-deformed quantum phase space associated with such system.Comment: 10 pages, LaTeX, revised version with minor corrections to appear in Phys. Rev.

    Overview of JET results in support of the ITER physics basis

    No full text
    The JET experimental campaign has focused on studies in support of the ITER physics basis. An overview of the results obtained is given for the reference ELMy H mode and advanced scenarios, which in JET are based on internal transport barriers. JET studies for ELMy H mode have been instrumental in the definition of ITER FEAT. Positive elongation and current scaling in the ITER scaling law have been confirmed, but the observed density scaling fits a two term (core and edge) model better. Significant progress in neoclassical tearing mode limits has been made showing that ITER operation with q(95) around 3.3 seems to be optimized. Effective helium pumping and divertor enrichment is found to be well within ITER requirements. Target asymmetries and hydrogen isotope retention are well simulated by modelling codes taking into account drift flows in the scrape-off plasmas. Striking improvements in fuelling effectiveness have been made with the new high field pellet launch facility. Good progress has been made on scenarios for achieving good confinement at high densities, both with radiation improved modes and with high field side pellets. Significant development of advanced scenarios, in view of their application to ITER, has been achieved. Progress towards integrated advanced scenarios is well developed with edge pressure control (impurity radiation). An access domain has been explored showing, in particular, that the power threshold increases with magnetic field but can be significantly reduced when lower hybrid current drive is used to produce target plasmas with negative shear. The role of ion pressure peaking on MHD has been well documented. Lack of sufficient additional heating power and interaction with the septum at high beta prevents assessment of the beta limits (steady plasmas achieved with beta (N) up to 2.6). Plasmas with a non-inductive current (I-NI/I-p = 60%), well aligned with the plasma current, high beta and good confinement have also been obtained

    Chapter 10: Core Transport Studies in JET

    No full text
    corecore