356 research outputs found

    Future prospects for gamma-ray

    Get PDF
    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes

    The future of high energy gamma ray astronomy and its potential astrophysical implications

    Get PDF
    Future satellites should carry instruments having over an order of magnitude greater sensitivity than those flown thus far as well as improved energy and angular resolution. The information to be obtained from these experiments should greatly enhance knowledge of: the very energetic and nuclear processes associated with compact objects; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies; and the degree of matter-antimatter symmetry of the universe. The relevant aspects of extragalactic gamma ray phenomena are emphasized along with the instruments planned. The high energy gamma ray results of forthcoming programs such as GAMMA-1 and the Gamma Ray Observatory should justify even more sophisticated telescopes. These advanced instruments might be placed on the space station currently being considered by NASA

    High energy gamma ray astronomy

    Get PDF
    The SAS-2 gamma ray experiment and its detection of celestial gamma rays are described. Data also cover intensity of high energy gamma rays, gamma ray distribution, gamma ray origin, and diffuse radiation

    Energy dependence of cosmic ray composition above 10(15) GeV/nucleus

    Get PDF
    It is argued that above 10 to the 5th power GeV/nucleus, in the range where charge-resolved spectra have not yet been determined, the appropriate measures of equal-energy composition are 1nA and 1nA , the mean value and dispersion relative to the mean value and dispersion relative to the mean of 1nA, where A is the mass number. Experimental data which are sensitive to changes in 1nA with increasing energy are examined. It is found that, taken as a whole, they show no change (+ or 0.5) between 10 to the 5th power and 10 to the 6th power GeV, and a decrease of 1.5 + or - 0.5 between 10 to the 6th power and 10 to the 8th power GeV, with no further change + or - 0.5) above 10 to the 8th power GeV. Taken as a whole, the various indirect estimates of the absolute value of 1nA above 10 to the 5th power GeV/nucleus are also consistent with this pattern. For a wide range of astrophysically plausible composition models the value of the other measure, 1nA is insensitive to changes in 1nA . Because of this the existing data on 1nA can likewise easily be reconciled with this pattern

    A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    Get PDF
    Data from the SAS-2 high energy gamma ray experiment were examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well defined period and period derivative information from radio observations to allow for gamma ray periodicity searches. When gamma ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability less than 0.0001 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma ray pulsars and that work in the near future should give important information on the nature of pulsars

    Implications of the experimental results on high energy cosmic rays with regard to their origin

    Get PDF
    It was shown in an earlier report that current cosmic ray evidence supports a change in the cosmic ray composition in the region between 10 to the 6th power and 10 to the 8th power GeV total energy in the direction of a smaller average value of A. Compared to normal celestial abundances, the heavy nuclei are much less abundant, and, in fact, the composition measurements above 10 to the 8th power GeV are consistent with there being only protons. Here, these results combined with those of the energy spectrum and anisotropy of the comsic rays and other astrophysical information will be examined to try to determine their implications for the origin of the cosmic rays. In this paper, consideration is given to the implications of one or more than one type of source in the galaxy to see which are consistent with the interpretation of current measurements. The nature of the source types that would be required are discussed

    A study of the diffuse galactic gamma radiation

    Get PDF
    Assuming cosmic rays pervade the Galaxy, they necessarily produced high energy gamma-rays as they interact with the instellar matter and photons. The cosmic ray nucleon interactions five rise to gamma rays primarily through the decay of pi mesons, giving a unique spectrum with a maximum at approximately 68 MeV. Cosmic ray electrons produce gamma rays through bremsstrahlung, but with a markedly different energy spectral shape, one which decreases monotonically with energy. Cosmic ray electrons also interact with the interstellar starlight, optical and infrared photons, and the blackbody radiation through the Compton process. A model of galactic gamma ray production is discussed, and the predicted spatial distribution and energy spectra are presented. Considering the uncertainty in the point source contributions, the agreement between the theoretical predictions and the gamma ray data seems quite reasonable

    Non-association of a celestial gamma ray source with the new Milky Way satellite galaxy

    Get PDF
    The newly discovered satellite galaxy located in the Milky Way galactic anti-center region is discussed along with the possibility that a nearby gamma ray source is associated with it. The factors which led to the conclusion that the gamma ray excess is not associated with the galaxy are considered
    corecore