106 research outputs found

    Identification of Babesia bovis merozoite antigens separated by continuous-flow electrophoresis that stimulate proliferation of helper T-cell clones derived from B. bovis-immune cattle.

    Get PDF
    To characterize Babesia bovis merozoite antigens that stimulate anamnestic T helper (Th)-cell responses from B. bovis-immune cattle, B. bovis-specific Th-cell lines and clones, previously assigned to different antigenic groups (W. C. Brown, S. Zhao, A. C. Rice-Ficht, K. S. Logan, and V. M. Woods, Infect. Immun. 60:4364-4372, 1992), were tested in proliferation assays against fractionated merozoite antigens. The antigenic groups were determined by the patterns of response of Th clones to different parasite isolates and soluble or membrane forms of merozoite antigen. Soluble antigen fractionated by anion-exchange chromatography or gel filtration by using fast-performance liquid chromatography resolved two or three antigenic peaks, respectively. To enable fractionation of membrane-associated proteins and to resolve more precisely the proteins present in homogenized merozoites, a novel technique of continuous-flow electrophoresis was employed. Merozoite membranes or whole merozoites were homogenized and solubilized in sodium dodecyl sulfate-sample buffer, electrophoresed under reducing conditions on 15% or 10% acrylamide gels, eluted, and collected as fractions. Individual fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tested for the ability to stimulate Babesia-specific CD4+ T-cell lines and clones. CD4+ Th-cell lines from two cattle displayed differential patterns of reactivity and detected numerous peaks of antigenic activity, ranging from < 14 to 76 kDa. Th-cell clones previously categorized into different antigenic groups detected antigenic peaks unique for clones representative of a given group. Antigens of 29, 51 to 52, and 85 to 95 kDa (group I), 40 kDa (group III), 20 kDa (group IV), 58 to 60 kDa (group VI), and 38, 45, and 83 kDa (group VII) were identified in the stimulatory fractions. Immunization of rabbits with selected fractions produced a panel of antisera that reacted specifically on Western blots (immunoblots) with merozoite antigens of similar sizes, leading to the tentative identification of candidate antigens of B. bovis merozoites with molecular masses of 20, 40, 44, 51 to 52 or 95, and 58 to 60 kDa that stimulate proliferation of Th clones representative of five different antigenic groups. These antisera may be useful for isolating recombinant proteins that are immunogenic for Th cells of immune cattle and therefore potentially useful for vaccine development

    Reduced parasitemia observed with erythrocytes containing inositol hexaphosphate.

    Get PDF
    Chemicals entrapped in erythrocytes by hypotonic hemolysis can be assessed for possible antiparasitic activity both in vivo and in vitro, regardless of whether they are able to diffuse into erythrocytes readily. Inositol hexaphosphate, a highly charged compound, produced a dramatic lowering of the percentage of cells infected by Babesia microti in vivo and both B. microti and Plasmodium falciparum in vitro. Several possible mechanisms for this observation are discussed

    High-resolution analysis of multi-copy variant surface glycoprotein gene expression sites in African trypanosomes

    Get PDF
    BACKGROUND: African trypanosomes cause lethal diseases in humans and animals and escape host immune attack by switching the expression of Variant Surface Glycoprotein (VSG) genes. The expressed VSGs are located at the ends of telomeric, polycistronic transcription units known as VSG expression sites (VSG-ESs). Each cell has many VSG-ESs but only one is transcribed in bloodstream-form parasites and all of them are inactive upon transmission to the insect vector mid-gut; a subset of monocistronic metacyclic VSG-ESs are then activated in the insect salivary gland. Deep-sequence analyses have been informative but assigning sequences to individual VSG-ESs has been challenging because they each contain closely related expression-site associated genes, or ESAGs, thought to contribute to virulence. RESULTS: We utilised ART, an in silico short read simulator to demonstrate the feasibility of accurately aligning reads to VSG-ESs. Then, using high-resolution transcriptomes from isogenic bloodstream and insect-stage Lister 427 Trypanosoma brucei, we uncover increased abundance in the insect mid-gut stage of mRNAs from metacyclic VSG-ESs and of mRNAs from the unusual ESAG, ESAG10. Further, we show that the silencing associated with allelic exclusion involves repression focussed at the ends of the VSG-ESs. We also use the approach to report relative fitness costs following ESAG RNAi from a genome-scale screen. CONCLUSIONS: By assigning sequences to individual VSG-ESs we provide new insights into VSG-ES transcription control, allelic exclusion and impacts on fitness. Thus, deeper insights into the expression and function of regulated multi-gene families are more accessible than previously anticipated. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-3154-8) contains supplementary material, which is available to authorized users

    Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras

    Get PDF
    Alanyl-peptide nucleic acid (alanyl-PNA)/DNA chimeras are oligomers envisaged to be beneficial in efficient DNA diagnostics based on an improved molecular beacon concept. A synthesis of alanyl-PNA/DNA chimera can be based on the solid phase assembly of the oligomer with mixed oligonucleotide/peptide backbone under DNA synthesis conditions, in which the nucleotides are introduced as phosphoramidites, whereas the nucleo amino acids make use of the acid labile monomethoxytrityl (MMT) group for temporary protection of the α-amino groups and acyl protecting groups for the exocyclic amino functions of the nucleobases. In this work, we realized for the first time the synthesis of all four MMT/acyl-protected nucleo alanines, achieved by deprotection/reprotection of the newly synthesized Boc/acyl intermediates, useful monomers for the obtainment of (alanyl-PNA)/DNA chimeras by conditions fully compatible with the standard phosphoramidite DNA synthesis strategy

    Functional Analysis of Host Factors that Mediate the Intracellular Lifestyle of Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans (Cn), the major causative agent of human fungal meningoencephalitis, replicates within phagolysosomes of infected host cells. Despite more than a half-century of investigation into host-Cn interactions, host factors that mediate infection by this fungal pathogen remain obscure. Here, we describe the development of a system that employs Drosophila S2 cells and RNA interference (RNAi) to define and characterize Cn host factors. The system recapitulated salient aspects of fungal interactions with mammalian cells, including phagocytosis, intracellular trafficking, replication, cell-to-cell spread and escape of the pathogen from host cells. Fifty-seven evolutionarily conserved host factors were identified using this system, including 29 factors that had not been previously implicated in mediating fungal pathogenesis. Subsequent analysis indicated that Cn exploits host actin cytoskeletal elements, cell surface signaling molecules, and vesicle-mediated transport proteins to establish a replicative niche. Several host molecules known to be associated with autophagy (Atg), including Atg2, Atg5, Atg9 and Pi3K59F (a class III PI3-kinase) were also uncovered in our screen. Small interfering RNA (siRNA) mediated depletion of these autophagy proteins in murine RAW264.7 macrophages demonstrated their requirement during Cn infection, thereby validating findings obtained using the Drosophila S2 cell system. Immunofluorescence confocal microscopy analyses demonstrated that Atg5, LC3, Atg9a were recruited to the vicinity of Cn containing vacuoles (CnCvs) in the early stages of Cn infection. Pharmacological inhibition of autophagy and/or PI3-kinase activity further demonstrated a requirement for autophagy associated host proteins in supporting infection of mammalian cells by Cn. Finally, systematic trafficking studies indicated that CnCVs associated with Atg proteins, including Atg5, Atg9a and LC3, during trafficking to a terminal intracellular compartment that was decorated with the lysosomal markers LAMP-1 and cathepsin D. Our findings validate the utility of the Drosophila S2 cell system as a functional genomic platform for identifying and characterizing host factors that mediate fungal intracellular replication. Our results also support a model in which host Atg proteins mediate Cn intracellular trafficking and replication

    Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen Brucella melitensis 16 M

    Get PDF
    Many pathogenic bacteria use a regulatory process termed quorum sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection of, and response to, these molecules depends on transcriptional regulators belonging to the LuxR family. Such a system has been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacterium responsible for brucellosis, a worldwide zoonosis that remains a serious public health concern in countries were the disease is endemic. Genes encoding two LuxR-type regulators, VjbR and BabR, have been identified in the genome of B. melitensis 16 M. A DeltavjbR mutant is highly attenuated in all experimental models of infection tested, suggesting a crucial role for QS in the virulence of Brucella. At present, no function has been attributed to BabR. The experiments described in this report indicate that 5% of the genes in the B. melitensis 16 M genome are regulated by VjbR and/or BabR, suggesting that QS is a global regulatory system in this bacterium. The overlap between BabR and VjbR targets suggest a cross-talk between these two regulators. Our results also demonstrate that VjbR and BabR regulate many genes and/or proteins involved in stress response, metabolism, and virulence, including those potentially involved in the adaptation of Brucella to the oxidative, pH, and nutritional stresses encountered within the host. These findings highlight the involvement of QS as a major regulatory system in Brucella and lead us to suggest that this regulatory system could participate in the spatial and sequential adaptation of Brucella strains to the host environment.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Tripping on Acid: Trans-Kingdom Perspectives on Biological Acids in Immunity and Pathogenesis

    Get PDF

    Amplified Fragment Length Polymorphism Reveals Genomic Variability among Mycobacterium avium subsp. paratuberculosis Isolates

    No full text
    Ninety-six primer sets were used for amplified fragment length polymorphism (AFLP) to characterize the genomes of 20 Mycobacterium avium subsp. paratuberculosis field isolates, 1 American Type Culture Collection (ATCC) M. avium subsp. paratuberculosis isolate (ATCC 19698), and 2 M. avium subsp. avium isolates (ATCC 35716 and Mac 104). AFLP analysis revealed a high degree of genomic polymorphism among M. avium subsp. paratuberculosis isolates that may be used to establish diagnostic patterns useful for the epidemiological tracking of M. avium subsp. paratuberculosis isolates. Four M. avium subsp. paratuberculosis-polymorphic regions revealed by AFLP were cloned and sequenced. Primers were generated internal to these regions for use in PCR analysis and applied to the M. avium subsp. paratuberculosis field isolates. An appropriate PCR product was obtained in 79 of 80 reactions, while the M. avium subsp. avium isolates failed to act as templates for PCR amplification in seven of eight reactions. This work revealed the presence of extensive polymorphisms in the genomes of M. avium subsp. paratuberculosis and M. avium subsp. avium, many of which are based on deletions. Of the M. avium subsp. paratuberculosis-specific sequences studied, one revealed a 5,145-bp region with no homologue in the M. avium subsp. avium genome. Within this region are genes responsible for integrase-recombinase function. Three additional M. avium subsp. paratuberculosis-polymorphic regions were cloned, revealing a number of housekeeping genes; all were evaluated for their diagnostic and epidemiological value
    corecore