165 research outputs found

    Value of routine ultrasound examination at 35-37 weeks' gestation in diagnosis of fetal abnormalities

    Get PDF
    Objective: To investigate the potential value of routine ultrasound examination at 35-37 weeks’ gestation in the diagnosis of previously unknown fetal abnormalities. Methods: This was a prospective study in 52,401 singleton pregnancies attending for a routine ultrasound examination at 35+0 - 36+6 weeks’ gestation; all pregnancies had a previous scan at 18-24 weeks and 47,215 also had a scan at 11-13 weeks. We included pregnancies resulting in livebirth or stillbirth but excluded those with known chromosomal abnormalities. The abnormalities were classified according to affected major organ system and the type and incidence of new abnormalities was determined. Results: In the study population the incidence of fetal abnormalities was 2.2% (1,168 / 52,401), including 847 (72.5%) that had been previously diagnosed during the first and / or second trimester, 247 (21.2%) that were detected for the first time at 35-37 weeks and 74 (6.3%) that were detected for the first time postnatally. The most common abnormalities that were diagnosed during the first and / or second trimester, that were also observed at 35-37 weeks, included aberrant right subclavian artery, ventricular septal defect, talipes, unilateral renal agenesis and / or pelvic kidney, hydronephrosis, duplex kidney or unilateral multicystic kidney, cystic pulmonary airway malformation, ventriculomegaly, cleft lip and palate, polydactyly,abdominal cyst or gastroschisis. The most common abnormalities seen at 35-37 weeks were hydronephrosis, mild ventriculomegaly, ventricular septal defect, duplex kidney, ovarian cyst and arachnoid cyst. The incidence of abnormalities first seen at 35-37 weeks was 0.5% and the most common were ovarian cysts, microcephaly, achondroplasia, dacryocystocele and hematocolpos. The incidence of abnormalities first seen postnatally was 0.1% and the most common were isolated cleft palate, polydactyly or syndactyly and ambiguous genitalia or hypospadias; prenatal examination of the genitalia was not a compulsory part of the protocol. Conclusions: A high proportion of fetal abnormalities are detected for the first time during a routine ultrasound examination at 35-37 weeks’ gestation. Such diagnosis and subsequent management, including selection of time and place for delivery and postnatal investigations, could potentially improve postnatal outcome

    Treatability of digested piggery/poultry manure by anammox bacteria

    Get PDF
    The liquid fraction of digested material is rich in ammonium and may require nitrogen removal. The aim of this research was to evaluate the applicability of the anammox process for the biological N removal from a supernatant coming from the anaerobic digestion of a mixture of piggery manure, poultry manure, and of agro-wastes. The supernatant was pre-treated in a partial nitritation pilot-scale reactor located at the farm. A batch procedure for testing the short term effect of high-strength wastewaters on anammox activity is presented. The anammox process was successfully applied for the first time to undiluted digestate, and the average N removal efficiency achieved during 350 days of experimentation in a SBR lab-scale reactor was 91%

    Disrupting resilient criminal networks through data analysis: The case of sicilian mafia

    Get PDF
    Compared to other types of social networks, criminal networks present particularly hard challenges, due to their strong resilience to disruption, which poses severe hurdles to LawEnforcement Agencies (LEAs). Herein, we borrow methods and tools from Social Network Analysis (SNA) to (i) unveil the structure and organization of Sicilian Mafia gangs, based on two real-world datasets, and (ii) gain insights as to how to efficiently reduce the Largest Connected Component (LCC) of two networks derived from them. Mafia networks have peculiar features in terms of the links distribution and strength, which makes them very different from other social networks, and extremely robust to exogenous perturbations. Analysts also face difficulties in collecting reliable datasets that accurately describe the gangs' internal structure and their relationships with the external world, which is why earlier studies are largely qualitative, elusive and incomplete. An added value of our work is the generation of two realworld datasets, based on raw data extracted from juridical acts, relating to a Mafia organization that operated in Sicily during the first decade of 2000s. We created two different networks, capturing phone calls and physical meetings, respectively. Our analysis simulated different intervention procedures: (i) arresting one criminal at a time (sequential node removal); and (ii) police raids (node block removal). In both the sequential, and the node block removal intervention procedures, the Betweenness centrality was the most effective strategy in prioritizing the nodes to be removed. For instance, when targeting the top 5% nodes with the largest Betweenness centrality, our simulations suggest a reduction of up to 70% in the size of the LCC. We also identified that, due the peculiar type of interactions in criminal networks (namely, the distribution of the interactions' frequency), no significant differences exist between weighted and unweighted network analysis. Our work has significant practical applications for perturbing the operations of criminal and terrorist networks

    Criminal networks analysis in missing data scenarios through graph distances

    Get PDF
    Data collected in criminal investigations may suffer from issues like: (i) incompleteness, due to the covert nature of criminal organizations; (ii) incorrectness, caused by either unintentional data collection errors or intentional deception by criminals; (iii) inconsistency, when the same information is collected into law enforcement databases multiple times, or in different formats. In this paper we analyze nine real criminal networks of different nature (i.e., Mafia networks, criminal street gangs and terrorist organizations) in order to quantify the impact of incomplete data, and to determine which network type is most affected by it. The networks are firstly pruned using two specific methods: (i) random edge removal, simulating the scenario in which the Law Enforcement Agencies fail to intercept some calls, or to spot sporadic meetings among suspects; (ii) node removal, modeling the situation in which some suspects cannot be intercepted or investigated. Finally we compute spectral distances (i.e., Adjacency, Laplacian and normalized Laplacian Spectral Distances) and matrix distances (i.e., Root Euclidean Distance) between the complete and pruned networks, which we compare using statistical analysis. Our investigation identifies two main features: first, the overall understanding of the criminal networks remains high even with incomplete data on criminal interactions (i.e., when 10% of edges are removed); second, removing even a small fraction of suspects not investigated (i.e., 2% of nodes are removed) may lead to significant misinterpretation of the overall network. Copyright

    Respirometric assessment of bacterial kinetics in algae-bacteria and activated sludge processes

    Get PDF
    Algae-bacteria (AB) consortia can be exploited for effective wastewater treatment, based on photosynthetic oxygenation to reduce energy requirements for aeration. While algal kinetics have been extensively evaluated, bacterial kinetics in AB systems are still based on parameters taken from the activated sludge models, lacking an experimental validation for AB consortia. A respirometric procedure was therefore proposed, to estimate bacterial kinetics in both activated sludge and AB, under different conditions of temperature, pH, dissolved oxygen, and substrate availability. Bacterial activities were differently influenced by operational/environmental conditions, suggesting that the adoption of typical activated sludge parameters could be inadequate for AB modelling. Indeed, respirometric results show that bacteria in AB consortia were adapted to a wider range of conditions, compared to activated sludge, confirming that a dedicated calibration of bacterial kinetics is essential for effectively modelling AB systems, and respirometry was proven to be a powerful and reliable tool to this purpose

    Gut-dependent inflammation and alterations of the intestinal microbiota in individuals with perinatal HIV exposure and different HIV serostatus

    Get PDF
    Objective: HIV-exposed infected (HEI) and uninfected (HEU) children represent the two possible outcomes of maternal HIV infection. Modifications of the intestinal microbiome have been linked to clinical vulnerability in both settings, yet whether HEI and HEU differ in terms of gut impairment and peripheral inflammation/activation is unknown. Design: We performed a cross-sectional, pilot study on fecal and plasma microbiome as well as plasma markers of gut damage, microbial translocation, inflammation and immune activation in HIV-infected and uninfected children born from an HIV-infected mother. Methods: Fecal and plasma microbiome were determined by means of 16S rDNA amplification with subsequent qPCR quantification. Plasma markers were quantified via ELISA. Results: Forty-seven HEI and 33 HEU children were consecutively enrolled. The two groups displayed differences in fecal beta-diversity and relative abundance, yet similar microbiome profiles in plasma as well as comparable gut damage and microbial translocation. In contrast, monocyte activation (sCD14) and systemic inflammation (IL-6) were significantly higher in HEI than HEU. Conclusion: In the setting of perinatal HIV infection, enduring immune activation and inflammation do not appear to be linked to alterations within the gut. Given that markers of activation and inflammation are independent predictors of HIV disease progression, future studies are needed to understand the underlying mechanisms of such processes and elaborate adjuvant therapies to reduce the clinical risk in individuals with perinatal HIV infection

    Computational Integration of Homolog and Pathway Gene Module Expression Reveals General Stemness Signatures

    Get PDF
    The stemness hypothesis states that all stem cells use common mechanisms to regulate self-renewal and multi-lineage potential. However, gene expression meta-analyses at the single gene level have failed to identify a significant number of genes selectively expressed by a broad range of stem cell types. We hypothesized that stemness may be regulated by modules of homologs. While the expression of any single gene within a module may vary from one stem cell type to the next, it is possible that the expression of the module as a whole is required so that the expression of different, yet functionally-synonymous, homologs is needed in different stem cells. Thus, we developed a computational method to test for stem cell-specific gene expression patterns from a comprehensive collection of 49 murine datasets covering 12 different stem cell types. We identified 40 individual genes and 224 stemness modules with reproducible and specific up-regulation across multiple stem cell types. The stemness modules included families regulating chromatin remodeling, DNA repair, and Wnt signaling. Strikingly, the majority of modules represent evolutionarily related homologs. Moreover, a score based on the discovered modules could accurately distinguish stem cell-like populations from other cell types in both normal and cancer tissues. This scoring system revealed that both mouse and human metastatic populations exhibit higher stemness indices than non-metastatic populations, providing further evidence for a stem cell-driven component underlying the transformation to metastatic disease

    c-Kit-Mediated Functional Positioning of Stem Cells to Their Niches Is Essential for Maintenance and Regeneration of Adult Hematopoiesis

    Get PDF
    The mechanism by which hematopoietic stem and progenitor cells (HSPCs) through interaction with their niches maintain and reconstitute adult hematopoietic cells is unknown. To functionally and genetically track localization of HSPCs with their niches, we employed novel mutant loxPs, lox66 and lox71 and Cre-recombinase technology to conditionally delete c-Kit in adult mice, while simultaneously enabling GFP expression in the c-Kit-deficient cells. Conditional deletion of c-Kit resulted in hematopoietic failure and splenic atrophy both at steady state and after marrow ablation leading to the demise of the treated adult mice. Within the marrow, the c-Kit-expressing GFP+ cells were positioned to Kit ligand (KL)-expressing niche cells. This c-Kit-mediated cellular adhesion was essential for long-term maintenance and expansion of HSPCs. These results lay the foundation for delivering KL within specific niches to maintain and restore hematopoiesis

    Towards a standardization of biomethane potential tests

    Get PDF
    8 PáginasProduction of biogas from different organic materials is a most interesting source of renewable energy. The biomethane potential (BMP) of these materials has to be determined to get insight in design parameters for anaerobic digesters. A workshop was held in June 2015 in Leysin Switzerland to agree on common solutions to the conundrum of inconsistent BMP test results. A discussion covers actions and criteria that are considered compulsory ito accept and validate a BMP test result; and recommendations concerning the inoculum substrate test setup and data analysis and reporting ito obtain test results that can be validated and reproduced.The workshop in Leysin, Switzerland, has been financed by the Swiss Federal Office for Energy, and co-sponsored by Bioprocess Control Sweden AB, Lund, Sweden. The authors thank Alexandra Maria Murray for editing the English
    • …
    corecore