5,859 research outputs found

    High order Chin actions in path integral Monte Carlo

    Full text link
    High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrarily to the Takahashi-Imada action, which is accurate to fourth order only for the trace, the Chin action is fully fourth order, with the additional advantage that the leading fourth and sixth order error coefficients are finely tunable. By optimizing two free parameters entering in the new action we show that the time step error dependence achieved is best fitted with a sixth order law. The computational effort per bead is increased but the total number of beads is greatly reduced, and the efficiency improvement with respect to the primitive approximation is approximately a factor of ten. The Chin action is tested in a one-dimensional harmonic oscillator, a H2_2 drop, and bulk liquid 4^4He. In all cases a sixth-order law is obtained with values of the number of beads that compare well with the pair action approximation in the stringent test of superfluid 4^4He.Comment: 19 pages, 8 figure

    The Boltzmann factor, DNA melting, and Brownian ratchets: Topics in an introductory physics sequence for biology and premedical students

    Full text link
    Three, interrelated biologically-relevant examples of biased random walks are presented: (1) A model for DNA melting, modelled as DNA unzipping, which provides a way to illustrate the role of the Boltzmann factor in a venue well-known to biology and pre-medical students; (2) the activity of helicase motor proteins in unzipping double-stranded DNA, for example, at the replication fork, which is an example of a Brownian ratchet; (3) force generation by actin polymerization, which is another Brownian ratchet, and for which the force and actin-concentration dependence of the velocity of actin polymerization is determined

    The Logic behind Feynman's Paths

    Full text link
    The classical notions of continuity and mechanical causality are left in order to refor- mulate the Quantum Theory starting from two principles: I) the intrinsic randomness of quantum process at microphysical level, II) the projective representations of sym- metries of the system. The second principle determines the geometry and then a new logic for describing the history of events (Feynman's paths) that modifies the rules of classical probabilistic calculus. The notion of classical trajectory is replaced by a history of spontaneous, random an discontinuous events. So the theory is reduced to determin- ing the probability distribution for such histories according with the symmetries of the system. The representation of the logic in terms of amplitudes leads to Feynman rules and, alternatively, its representation in terms of projectors results in the Schwinger trace formula.Comment: 15 pages, contribution to Mario Castagnino Festschrif

    Propagation of Vortex Electron Wave Functions in a Magnetic Field

    Full text link
    The physics of coherent beams of photons carrying axial orbital angular momentum (OAM) is well understood and such beams, sometimes known as vortex beams, have found applications in optics and microscopy. Recently electron beams carrying very large values of axial OAM have been generated. In the absence of coupling to an external electromagnetic field the propagation of such vortex electron beams is virtually identical mathematically to that of vortex photon beams propagating in a medium with a homogeneous index of refraction. But when coupled to an external electromagnetic field the propagation of vortex electron beams is distinctly different from photons. Here we use the exact path integral solution to Schrodingers equation to examine the time evolution of an electron wave function carrying axial OAM. Interestingly we find that the nonzero OAM wave function can be obtained from the zero OAM wave function, in the case considered here, simply by multipling it by an appropriate time and position dependent prefactor. Hence adding OAM and propagating can in this case be replaced by first propagating then adding OAM. Also, the results shown provide an explicit illustration of the fact that the gyromagnetic ratio for OAM is unity. We also propose a novel version of the Bohm-Aharonov effect using vortex electron beams.Comment: 14 pages, 2 figures, submitted to Phys Rev

    Entangling ability of a beam splitter in the presence of temporal which-path information

    Full text link
    We calculate the amount of polarization-entanglement induced by two-photon interference at a lossless beam splitter. Entanglement and its witness are quantified respectively by concurrence and the Bell-CHSH parameter. In the presence of a Mandel dip, the interplay of two kinds of which-path information -- temporal and polarization -- gives rise to the existence of entangled polarization-states that cannot violate the Bell-CHSH inequality.Comment: 8 pages including 2 figure

    Heat Fluctuations in Brownian Transducers

    Get PDF
    Heat fluctuation probability distribution function in Brownian transducers operating between two heat reservoirs is studied. We find, both analytically and numerically, that the recently proposed Fluctuation Theorem for Heat Exchange [C. Jarzynski and D. K. Wojcik, Phys. Rev. Lett. 92, 230602 (2004)] has to be modified when the coupling mechanism between both baths is considered. We also extend such relation when external work is present. Our work fixes the domain of applicability of the theorem in more realistic operating systems.Comment: Comments are welcom

    Realizable Hamiltonians for Universal Adiabatic Quantum Computers

    Get PDF
    It has been established that local lattice spin Hamiltonians can be used for universal adiabatic quantum computation. However, the 2-local model Hamiltonians used in these proofs are general and hence do not limit the types of interactions required between spins. To address this concern, the present paper provides two simple model Hamiltonians that are of practical interest to experimentalists working towards the realization of a universal adiabatic quantum computer. The model Hamiltonians presented are the simplest known QMA-complete 2-local Hamiltonians. The 2-local Ising model with 1-local transverse field which has been realized using an array of technologies, is perhaps the simplest quantum spin model but is unlikely to be universal for adiabatic quantum computation. We demonstrate that this model can be rendered universal and QMA-complete by adding a tunable 2-local transverse XX coupling. We also show the universality and QMA-completeness of spin models with only 1-local Z and X fields and 2-local ZX interactions.Comment: Paper revised and extended to improve clarity; to appear in Physical Review

    Tipping time of a quantum rod

    Full text link
    The behaviour of a quantum rod, pivoted at its lower end on an impenetrable floor and restricted to moving in the vertical plane under the gravitational potential is studied analytically under the approximation that the rod is initially localised to a small-enough neighbourhood around the point of classical unstable equilibrium. It is shown that the rod evolves out of this neighbourhood. The time required for this to happen, i.e., the tipping time is calculated using the semi-classical path integral. It is shown that equilibrium is recovered in the classical limit, and that our calculations are consistent with the uncertainty principle.Comment: 10 pages, 1 figure, To appear in Euro. J. Phy

    How well do we know the neutron structure function?

    Full text link
    We present a detailed analysis of the uncertainty in the neutron F2n structure function extracted from inclusive deuteron and proton deep-inelastic scattering data. The analysis includes experimental uncertainties as well as uncertainties associated with the deuteron wave function, nuclear smearing, and nucleon off-shell corrections. Consistently accounting for the Q^2 dependence of the data and calculations, and restricting the nuclear corrections to microscopic models of the deuteron, we find significantly smaller uncertainty in the extracted F2n/F2p ratio than in previous analyses. In addition to yielding an improved extraction of the neutron structure function, this analysis also provides an important baseline that will allow future, model-independent extractions of neutron structure to be used to examine nuclear medium effects in the the deuteron.Comment: 5 pages, 6 figure

    Ideal Linear Chain Polymers with Fixed Angular Momentum

    Full text link
    The statistical mechanics of a linear non-interacting polymer chain with a large number of monomers is considered with fixed angular momentum. The radius of gyration for a linear polymer is derived exactly by functional integration. This result is then compared to simulations done with a large number of non-interacting rigid links at fixed angular momentum. The simulation agrees with the theory up to finite size corrections. The simulations are also used to investigate the anisotropic nature of a spinning polymer. We find universal scaling of the polymer size along the direction of the angular momentum, as a function of rescaled angular momentum.Comment: 7 pages, 3 figure
    • 

    corecore