256 research outputs found

    Neuromarketing: qué sabe de ti, que los demás no

    Get PDF
    En este documento se describe la forma en la que el neuromarketing hace que la segmentación de género, sea una herramienta funcional para poder conocer al cliente y sus deseos. Se explorará el mercadeo desde sus inicios, mostrando cómo evoluciona hasta enfocarse en el cliente como su principal objetivo. Al llegar a este punto el mercadeo se encuentra con un nuevo aliado, la neurociencia, la cual le muestra que por medio de diversas técnicas tiene la capacidad de medir las reacciones de su consumidor, a los distintos estímulos que le envía para cautivarlo. En este proceso se dan a conocer las tecnologías más usadas por el neuromarketing para este fin; además se expondrá parte de la anatomía del consumidor con la que interactúa el mercadeo: sus sentidos y su cerebro. Posteriormente se explica cómo a través del entendimiento de las percepciones y comportamiento del cliente, puede beneficiarse el mercadeo en sus propósitos y su vez, satisfacer al mercado en lo que realmente quiere.This document describes the way in which neuromarketing makes of gender segmentation a functional tool for knowing the customers and their desires. Marketing will be explored from its origins, showing how it evolves to focus on the customer as its main objective. At this point, marketing meets neuroscience, a new ally who shows through many techniques, that has the ability to measure the consumers’ reactions to the different stimuli that marketing sends to captivate them. In this process, it will make known the technologies that neuromarketing uses the most for this purpose; it will also present the consumers’ anatomy, which the marketing interacts with the most: the senses and the brain. Subsequently, it will be explained how, with understanding clients’ perceptions and behavior, marketing gets to benefit its purposes and at the same time satisfy what the market’s really wants.Centro de Estudios Empresariales para la Perdurabilida

    String amplitudes in arbitrary dimensions

    Full text link
    We calculate gravitational dressed tachyon correlators in non critcal dimensions. The 2D gravity part of our theory is constrained to constant curvature. Then scaling dimensions of gravitational dressed vertex operators are equal to their bare conformal dimensions. Considering the model as d+2 dimensional critical string we calculate poles of generalized Shapiro-Virasoro amplitudes.Comment: 14 page

    The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling

    Get PDF
    The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin–Benson–Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids—a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.ISSN:1040-4651ISSN:1531-298XISSN:1532-298

    Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis

    Get PDF
    Plant defensive strategies bring into play blends of compounds dependent on the type of attacker and coming from different synthesis pathways. Interest in the field is mainly focused on volatile organic compounds (VOCs) and jasmonic acid (JA). By contrast, little is known about the oxidized polyunsaturated fatty acids (PUFAs), such as PUFA-hydroperoxides, PUFA-hydroxides, or PUFA-ketones. PUFA-hydroperoxides and their derivatives might be involved in stress response and show antimicrobial activities. Hydroperoxides are also precursors of JA and some volatile compounds. In this paper, the differential biochemical response of a plant against insects with distinct feeding behaviours is characterized not only in terms of VOC signature and JA profile but also in terms of their precursors synthesized through the lipoxygenase (LOX)-pathway at the early stage of the plant response. For this purpose, two leading pests of potato with distinct feeding behaviours were used: the Colorado Potato Beetle (Leptinotarsa decemlineata Say), a chewing herbivore, and the Green Peach Aphid (Myzus persicae Sulzer), a piercing-sucking insect. The volatile signatures identified clearly differ in function with the feeding behaviour of the attacker and the aphid, which causes the smaller damages, triggers the emission of a higher number of volatiles. In addition, 9-LOX products, which are usually associated with defence against pathogens, were exclusively activated by aphid attack. Furthermore, a correlation between volatiles and JA accumulation and the evolution of their precursors was determined. Finally, the role of the insect itself on the plant response after insect infestation was highlighted

    Arabidopsis CPR5 Independently Regulates Seed Germination and Postgermination Arrest of Development through LOX Pathway and ABA Signaling

    Get PDF
    The phytohormone abscisic acid (ABA) and the lipoxygenases (LOXs) pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently

    Electroesophagogram in gastroesophageal reflux disease with a new theory on the pathogenesis of its electric changes

    Get PDF
    BACKGROUND: In view of the disturbed esophageal peristaltic activity and abnormal esophageal motility in gastroesophageal reflux disease, (GERD), we investigated the hypothesis that these changes result from a disordered myoelectric activity of the esophagus. METHODS: The electric activity of the esophagus (electroesophagogram, EEG) was studied in 27 patients with GERD (16 men, 11 women, mean age 42.6 ± 5.2 years) and 10 healthy volunteers as controls (6 men, 4 women, mean age 41.4 ± 4.9 years). According to the Feussner scoring system, 7 patients had a mild (score 1), 10 a moderate (score 2) and 10 a severe (score 3) stage of the disease. One electrode was applied to the upper third and a second to the lower third of the esophagus, and the electric activity was recorded. The test was repeated after the upper electrode had been moved to the mid-esophagus. RESULTS: The EEG of the healthy volunteers showed slow waves and exhibited the same frequency, amplitude and conduction velocity from the 2 electrodes of the individual subject, regardless of their location in the upper, middle or lower esophagus. Action potentials occurred randomly. In GERD patients, score 1 exhibited electric waves' variables similar to those of the healthy volunteers. In score 2, the waves recorded irregular rhythm and lower variables than the controls. Score 3 showed a "silent" EEG without waves. CONCLUSION: The electric activity in GERD exhibited 3 different patterns depending on the stages of GERD. Score 1 exhibited a normal EEG which apparently denotes normal esophageal motility. Score 2 recorded irregular electric waves variables which are presumably indicative of decreased esophageal motility and reflux clearance. In score 3, a "silent" EEG was recorded with probably no acid clearance. It is postulated that the interstitial cells of Cajal which are the electric activity generators, are involved in the inflammatory process of GERD. Destruction of these cells appears to occur in grades that are in accordance with GERD scores. The EEG seems to have the potential to act as an investigative tool in the diagnosis of GERD stages
    corecore