24 research outputs found

    Biological treatment of chicken feather waste for improved biogas production

    No full text
    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas. Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production. Chopped, autoclaved chicken feathers (4%, W/V) were completely degraded, resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain. During the subsequent anaerobic batch digestion experiments, methane production of 0.35 Nm(3)/kg dry feathers (i.e., 0.4 Nm(3)/kg volatile solids of feathers), corresponding to 80% of the theoretical value on proteins, was achieved from the feather hydrolyzates, independently of the pre-hydrolysis time period of 1, 2 or 8 days. Cultivation with a native keratinase producing strain, Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate, which then was digested achieving a maximum accumulated methane production of 0.31 Nm(3)/kg dry feathers. Feather hydrolyzates treated with the wild type B. megaterium produced 0.21 Nm(3) CH(4)/kg dry feathers as maximum yield

    Major histocompatibility complex class II (DR) antigen and costimulatory molecules on in vitro and in vivo activated human polymorphonuclear neutrophils

    No full text
    We have previously shown that normal human peripheral blood polymorphonuclear neutrophils (PMNs) contain cytoplasmic ‘stores’ of three key molecules normally associated with antigen presentation and T-cell costimulation, i.e. major histocompatibility complex class II (DR) antigen, CD80 (B7-1) and CD86 (B7-2). These cytoplasmic molecules were found to translocate to the cell surface within a few minutes following cross-linking (X-L) of Mac-1: an early neutrophil activation signal. In this study we have compared X-L of Mac −1 in parallel with four other well documented in vitro neutrophil activators: phorbol myristate acetate, N-formyl methionyl leucyl phenylalanine, lipopolysaccharide, and phagocytosis of immunoglobulin G–Latex particles. In addition, we have used paired samples of neutrophils obtained from peripheral blood (as a control) and synovial fluid from patients with rheumatoid arthritis as a source of in vivo activated cells. With the exception of phagocytosis, all activators resulted in the rapid (within 30 min) generation of two populations of activated neutrophils (designated P1 and P2) based on flow-cytometry measurements of size, granularity and phenotype. Significant up-regulation of DR and costimulatory molecules was observed, predominantly on P2 cells, with all activators except phagocytosis. CD80 and CD86 were noted to respond to the various activation signals in a different pattern suggesting that their intracellular granule location may be different. Dual-staining confocal laser microscopy studies showed that CD80 is largely confined to secretory vesicles (SVs) while CD86 appears to have a much wider distribution being found in SVs and within secondary (specific) and primary (azurophilic) granules. Increased surface expression of these antigens was also observed on P2 synovial fluid neutrophils appearing as large heterogeneous clusters on the cell surface when visualized by confocal laser microscopy

    Cross-linking of neutrophil CD11b results in rapid cell surface expression of molecules required for antigen presentation and T-cell activation

    No full text
    Recent studies suggest that neutrophils may play a role in antigen presentation. In support of this hypothesis it has been shown that these cells appear to contain cytoplasmic stores of molecules required for this function, i.e. major histocompatibility complex class II (DR) antigen, CD80 and CD86. In this study we have considered a mechanism for the translocation of these preformed molecules onto the cell surface which does not require active synthesis. Cross-linking of the Mac-1 molecule (CD18 + CD11b) was shown to result in rapid cell surface expression of CD80, CD86 and DR antigen on the surface of normal human peripheral blood neutrophils. A distinct subpopulation (approximately 20%) of neutrophils appeared to be enlarged and were found to express significantly elevated levels of these molecules on the cell surface following cross-linking of CD11b when compared with control cells. The level of expression of CD80, CD86 and DR antigen on these large cells was comparable to, and in some cases greater than, the levels found expressed on the surface of monocytes obtained from the same donors. In addition, these cytoplasmic molecules were shown by confocal laser microscopy and by immunoelectron microscopy to be located within secretory vesicles. Following rapid translocation onto the cell surface, CD80 and CD86 appeared to be colocalized within large clusters reminiscent of the supramolecular antigen clusters previously found on conventional antigen-presenting cells. These findings therefore lend further support for the hypothesis that neutrophils may have a role to play in antigen presentation and/or T-cell activation

    Proinflammatory Activity of a Cecropin-Like Antibacterial Peptide from Helicobacter pylori

    No full text
    Helicobacter pylori, the bacterial pathogen associated with gastritis and peptic ulcers, is highly successful in establishing infection in the human gastric mucosa, a process typically associated with massive infiltration of inflammatory cells. Colonization of the mucosa is suggested to be facilitated by H. pylori-produced cecropin-like peptides with antibacterial properties, giving the microbe a competitive advantage over other bacteria. We show that a cecropin-like antibacterial peptide from H. pylori, Hp(2-20), not only has a potent bactericidal effect but also induces proinflammatory activities in human neutrophils, e.g., upregulation of integrins (Mac-1), induction of chemotaxis, and activation of the oxygen radical producing NADPH-oxidase. Furthermore, we show that these effects are mediated through binding of Hp(2-20) to the promiscuous, G-protein-linked lipoxin A(4) receptor–formyl peptide-like receptor 1

    Neutrophil differentiated HL-60 cells model Mac-1 (CD11b/CD18)-independent neutrophil transepithelial migration

    No full text
    During active intestinal inflammation granulocytes accumulate in the lumen of the gut where they damage the epithelium through the release of various products such as reactive oxygen species and proteolytic enzymes. Previously, using function blocking monoclonal antibodies, we showed that neutrophil migration across intestinal epithelial monolayers in response to various chemoattractants was partially ÎČ(2) integrin Mac-1 (CD11b/CD18)-independent. Here, we show that treating neutrophils with intact monoclonal antibody (mAb) to CD18 activates the cells to express more CD11b. Thus our goal now was to determine whether neutrophil Mac-1-independent transepithelial migration proceeds independently of prior cell activation through Mac-1. We took two approaches, one using blocking Fabâ€Č fragments of mAb to CD18 and the second was to develop a neutrophil differentiated HL-60 cell line which is Mac-1 deficient to further study neutrophil/epithelial cell interaction. Anti-CD18 Fabâ€Č minimally activated neutrophils but inhibited approximately 75% of transepithelial migration to fMLP while having a minimal effect (≀25% inhibition) on the migration to C5a. Upon incubation with dimethylsulphoxide, HL-60 cells differentiated and up-regulated CD11b expression and migrated to C5a and n-formyl methionyl leucyl phenylalanine in a similar manner to peripheral blood neutrophils. In contrast, CD11b expression was minimal on HL-60 cells differentiated with dibutytyl cAMP to a neutrophil-like phenotype. These cells, however, readily migrated across both intestinal and lung epithelial monolayers in response to C5a. We conclude that Mac-1-independent transepithelial migration does not require prior activation of cells via Mac-1 ligation because HL-60 cells lacking Mac-1 (CD11b/CD18) expression migrate effectively. HL-60 cells differentiated with dbcAMP should greatly assist in the search for the Mac-1-independent ligands for neutrophil migration across epithelium

    Immunotherapy Reduces Allergen-Mediated CD66b Expression and Myeloperoxidase Levels on Human Neutrophils from Allergic Patients

    No full text
    CD66b is a member of the carcinoembryonic antigen family, which mediates the adhesion between neutrophils and to endothelial cells. Allergen-specific immunotherapy is widely used to treat allergic diseases, and the molecular mechanisms underlying this therapy are poorly understood. The present work was undertaken to analyze A) the in vitro effect of allergens and immunotherapy on cell-surface CD66b expression of neutrophils from patients with allergic asthma and rhinitis and B) the in vivo effect of immunotherapy on cell-surface CD66b expression of neutrophils from nasal lavage fluid during the spring season. Myeloperoxidase expression and activity was also analyzed in nasal lavage fluid as a general marker of neutrophil activation. RESULTS: CD66b cell-surface expression is upregulated in vitro in response to allergens, and significantly reduced by immunotherapy (p<0.001). Myeloperoxidase activity in nasal lavage fluid was also significantly reduced by immunotherapy, as were the neutrophil cell-surface expression of CD66b and myeloperoxidase (p<0.001). Interestingly, CD66b expression was higher in neutrophils from nasal lavage fluid than those from peripheral blood, and immunotherapy reduced the number of CD66(+)MPO(+) cells in nasal lavage fluid. Thus, immunotherapy positive effects might, at least in part, be mediated by the negative regulation of the CD66b and myeloperoxidase activity in human neutrophils

    Deficient beta-mannosylation of Candida albicans phospholipomannan affects the proinflammatory response in macrophages.

    Get PDF
    Candida albicans produces a complex glycosphingolipid called phospholipomannan (PLM), which is present on the cell-wall surface of yeast and shed upon contact with host cells. The glycan moiety of PLM is composed of ÎČ-mannosides with degrees of polymerization up to 19 in C. albicans serotype A. PLM from serotype B strains displays a twofold decrease in the length of the glycan chains. In this study we compared the proinflammatory activities of PLMs purified from C. albicans serotype A and serotype B strains and from a bmt6Δ mutant of C. albicans, whose PLM is composed of short truncated oligomannosidic chain. We found that PLMs activate caspase-1 in murine macrophage cell line J774 independent of the glycan chain length although IL-1ÎČ secretion is more intense with long glycan chain. None of the tested PLMs stimulate ROS production, indicating that caspase-1 activation may occur through a ROS-independent pathway. On the other hand, only long-chain oligomannosides present on PLM from serotype A strain (PLM-A) are able to induce TNF-α production in macrophages, a property that is not affect by blocking endocytosis through latrunculin A treatment. Finally, we demonstrate that soluble and not cell surface-bound galectin-3, is able to potentiate PLM-A-induced TNF-α production in macrophages. PLMs from C. albicans serotype B and from bmt6∆ mutant are not able to induce TNF-α production and galectin-3 pretreatment does not interfere with this result. In conclusion, we show here that PLMs are able to evoke a proinflammatory state in macrophage, which is in part dependent on their glycosylation status. Long-glycan chains favor interaction with soluble galectin-3 and help amplify inflammatory response
    corecore