97 research outputs found

    Unbiased analysis of obesity related, fat depot specific changes of adipocyte volumes and numbers using light sheet fluorescence microscopy

    Get PDF
    In translational obesity research, objective assessment of adipocyte sizes and numbers is essential to characterize histomorphological alterations linked to obesity, and to evaluate the efficacies of experimental medicinal or dietetic interventions. Design-based quantitative stereological techniques based on the analysis of 2D-histological sections provide unbiased estimates of relevant 3D-parameters of adipocyte morphology, but often involve complex and time-consuming tissue processing and analysis steps. Here we report the application of direct 3D light sheet fluorescence microscopy (LSFM) for effective and accurate analysis of adipocyte volumes and numbers in optically cleared adipose tissue samples from a porcine model of diet-induced obesity (DIO). Subcutaneous and visceral adipose tissue samples from DIO-minipigs and lean controls were systematically randomly sampled, optically cleared with 3DISCO (3-dimensional imaging of solvent cleared organs), stained with eosin, and subjected to LSFM for detection of adipocyte cell membrane autofluorescence. Individual adipocytes were unbiasedly sampled in digital 3D reconstructions of the adipose tissue samples, and their individual cell volumes were directly measured by automated digital image analysis. Adipocyte numbers and mean volumes obtained by LSFM analysis did not significantly differ from the corresponding values obtained by unbiased quantitative stereological analysis techniques performed on the same samples, thus proving the applicability of LSFM for efficient analysis of relevant morphological adipocyte parameters. The results of the present study demonstrate an adipose tissue depot specific plasticity of adipocyte growth responses to nutrient oversupply. This was characterized by an exclusively hypertrophic growth of visceral adipocytes, whereas adipocytes in subcutaneous fat tissue depots also displayed a marked (hyperplastic) increase in cell number. LSFM allows for accurate and efficient determination of relevant quantitative morphological adipocyte parameters. The applied stereological methods and LSFM protocols are described in detail and can serve as a guideline for unbiased quantitative morphological analyses of adipocytes in other studies and species

    GIP receptor agonism improves dyslipidemia and atherosclerosis independently of body weight loss in preclinical mouse model for cardio-metabolic disease

    Get PDF
    BackgroundAgonism at the receptor for the glucose-dependent insulinotropic polypeptide (GIPR) is a key component of the novel unimolecular GIPR:GLP-1R co-agonists, which are among the most promising drugs in clinical development for the treatment of obesity and type 2 diabetes. The therapeutic effect of chronic GIPR agonism to treat dyslipidemia and thus to reduce the cardiovascular disease risk independently of body weight loss has not been explored yet.MethodsAfter 8 weeks on western diet, LDL receptor knockout (LDLR-/-) male mice were treated with daily subcutaneous injections of long-acting acylated GIP analog (acyl-GIP;10nmol/kg body weight) for 28 days. Body weight, food intake, whole-body composition were monitored throughout the study. Fasting blood glucose and intraperitoneal glucose tolerance test (ipGTT) were determined on day 21 of the study. Circulating lipid levels, lipoprotein profiles and atherosclerotic lesion size was assessed at the end of the study. Acyl-GIP effects on fat depots were determined by histology and transcriptomics.ResultsHerein we found that treatment with acyl-GIP reduced dyslipidemia and atherogenesis in male LDLR-/- mice. Acyl-GIP administration resulted in smaller adipocytes within the inguinal fat depot and RNAseq analysis of the latter revealed that acyl-GIP may improve dyslipidemia by directly modulating lipid metabolism in this fat depot.ConclusionsThis study identified an unanticipated efficacy of chronic GIPR agonism to improve dyslipidemia and cardiovascular disease independently of body weight loss, indicating that treatment with acyl-GIP may be a novel approach to alleviate cardiometabolic disease

    Patterns of Carbon-Bound Exogenous Compounds Impact Disease Pathophysiology in Lung Cancer Subtypes in Different Ways.

    Get PDF
    Carbon-bound exogenous compounds, such as polycyclic aromatic hydrocarbons (PAHs), tobacco-specific nitrosamines, aromatic amines, and organohalogens, are known to affect both tumor characteristics and patient outcomes in lung squamous cell carcinoma (LUSC); however, the roles of these compounds in lung adenocarcinoma (LUAD) remain unclear. We analyzed 11 carbon-bound exogenous compounds in LUAD and LUSC samples using in situ high mass-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging and performed a cluster analysis to compare the patterns of carbon-bound exogenous compounds between these two lung cancer subtypes. Correlation analyses were conducted to investigate associations among exogenous compounds, endogenous metabolites, and clinical data, including patient survival outcomes and smoking behaviors. Additionally, we examined differences in exogenous compound patterns between normal and tumor tissues. Our analyses revealed that PAHs, aromatic amines, and organohalogens were more abundant in LUAD than in LUSC, whereas the tobacco-specific nitrosamine nicotine-derived nitrosamine ketone was more abundant in LUSC. Patients with LUAD and LUSC could be separated according to carbon-bound exogenous compound patterns detected in the tumor compartment. The same compounds had differential impacts on patient outcomes, depending on the cancer subtype. Correlation and network analyses indicated substantial differences between LUAD and LUSC metabolomes, associated with substantial differences in the patterns of the carbon-bound exogenous compounds. These data suggest that the contributions of these carcinogenic compounds to cancer biology may differ according to the cancer subtypes

    Loss of Npn1 from motor neurons causes postnatal deficits independent from Sema3A signaling

    Get PDF
    AbstractThe correct wiring of neuronal circuits is of crucial importance for the function of the vertebrate nervous system. Guidance cues like the neuropilin receptors (Npn) and their ligands, the semaphorins (Sema) provide a tight spatiotemporal control of sensory and motor axon growth and guidance. Among this family of guidance partners the Sema3A-Npn1 interaction has been shown to be of great importance, since defective signaling leads to wiring deficits and defasciculation. For the embryonic stage these defects have been well described, however, also after birth the organism can adapt to new challenges by compensational mechanisms. Therefore, we used the mouse lines Olig2-Cre;Npn1cond and Npn1Sema− to investigate how postnatal organisms cope with the loss of Npn1 selectively from motor neurons or a systemic dysfunctional Sema3A-Npn1 signaling in the entire organism, respectively. While in Olig2-Cre+;Npn1cond−/− mice clear anatomical deficits in paw posturing, bone structure, as well as muscle and nerve composition became evident, Npn1Sema− mutants appeared anatomically normal. Furthermore, Olig2-Cre+;Npn1cond mutants revealed a dysfunctional extensor muscle innervation after single-train stimulation of the N.radial. Interestingly, these mice did not show obvious deficits in voluntary locomotion, however, skilled motor function was affected. In contrast, Npn1Sema− mutants were less affected in all behavioral tests and able to improve their performance over time. Our data suggest that loss of Sema3A-Npn1 signaling is not the only cause for the observed deficits in Olig2-Cre+;Npn1cond−/− mice and that additional, yet unknown binding partners for Npn1 may be involved that allow Npn1Sema− mutants to compensate for their developmental deficits

    MALDI mass spectrometry imaging - Diagnostic pathways and metabolites for renal tumor entities

    Full text link
    BACKGROUND Correct tumor subtyping of primary renal tumors is essential for treatment decision in daily routine. Most of the tumors can be classified on morphology alone. Nevertheless, some diagnoses are difficult and further investigations are needed for correct tumor subtyping. Beside histochemical investigations high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can detect new diagnostic biomarkers and hence improve the diagnostic. PATIENTS AND METHODS Formalin-fixed paraffin embedded (FFPE) tissue specimens from clear cell renal cell carcinoma (ccRCC, n=552), papillary RCC (pRCC, n=122), chromophobe RCC (chRCC, n=108) and renal Oncocytoma (rO, n=71) were analyzed by high mass resolution matrix-assisted laser desorption/ionization (MALDI) fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging (MSI). SPACiAL pipeline was executed for automated co-registration of histological and molecular features. Pathway enrichment and pathway topology analysis were performed to determine significant differences between RCC subtypes. RESULTS We discriminated the four histological subtypes (ccRCC, pRCC, chRCC and rO) and established the subtype specific pathways and metabolic profiles. RO showed an enrichment of pentose phosphate, taurine and hypotaurine, glycerophospholipid, amino sugar and nucleotide sugar, fructose and mannose, glycine, serine and threonine pathways. ChRCC is defined by enriched pathways including the amino sugar and nucleotide sugar, fructose and mannose, glycerophospholipid, taurine and hypotaurine, glycine, serine and threonine pathways. Pyrimidine, amino sugar and nucleotide sugar, glycerophospholipid and glutathione pathways are enriched in ccRCC. Furthermore, we detected enriched phosphatidylinositol and glycerophospholipid pathways in pRCC. CONCLUSION In summary, we performed a classification system with a mean accuracy in tumor discrimination of 85,13%. Furthermore, we detected tumor specific biomarkers for the four most common primary renal tumors by MALDI-MSI. This method is a useful tool in differential diagnosis and in biomarker detection

    Association between HSP90 and Her2 in gastric and gastroesophageal carcinomas

    Get PDF
    BACKGROUND Her2 expression and amplification occurs in a significant subset of gastro-esophageal carcinomas. Her2 is a client protein of molecular chaperones, e.g. heat shock protein (HSP) 90, rendering targeted therapies against Her2/HSP90 an interesting approach. This study aimed to investigate the role and relationship of Her2 and HSP90 in gastric and gastro-esophageal adenocarcinomas. MATERIAL AND METHODS Immunohistochemical determination of HSP90 and Her2 expression was performed on 347 primary resected tumors. Her2 amplification was additionally determined by fluorescence in situ hybridization for all cases. Expression and amplification results were correlated with pathologic parameters (UICC pTNM category, tumor grading) and survival. RESULTS Elevated Her2 copy numbers were observed in 87 tumors, 21 of them showing amplification. 174 tumors showed Her2 immunoreactivity/expression. HSP 90 immunoreactivity was found in 125 tumors. There was no difference between gastric carcinomas and carcinomas of the gastroesophageal junction regarding Her2 or HSP90. Both high HSP90 and Her2 expression/amplification were associated with earlier tumor stages (p<0.01), absence of lymph node metastases (p<0.02) and Laurens intestinal type (p<0.001). HSP90 correlated with Her2 expression and amplification (p<0.001 each). Expressions of HSP90 and Her2, but not Her2 amplification were associated with better prognosis (p=0.02; p=0.004; p=0.802). Moreover, Her2 expression was an independent prognostic factor for overall survival in the subgroup of gastric carcinoma patients (p=0.014) besides pT category, pN category and distant metastases. CONCLUSION Her2 expression and gene amplification occurred in a significant subset of cases. Our results suggest a favorable prognostic impact of Her2 expression. This warrants further investigations regarding the significance of Her2 non-amplified tumors showing Her2 immunoreactivity and the definition of Her2 status in gastric cancers. Moreover, the correlation of Her2 expression with the expression of Her2 chaperoning HSP90 may indicate a synergistic regulation. Targeting HSP90 with or without Her2 may offer additional therapeutic options for gastric carcinoma treatment

    Metabolic heterogeneity in adrenocortical carcinoma impacts patient outcomes

    Get PDF
    Spatially resolved metabolomics enables the investigation of tumoral metabolites in situ. Inter- and intratumor heterogeneity are key factors associated with patient outcomes. Adrenocortical carcinoma (ACC) is an exceedingly rare tumor associated with poor survival. Its clinical prognosis is highly variable, but the contributions of tumor metabolic heterogeneity have not been investigated thus far to our knowledge. An in-depth understanding of tumor heterogeneity requires molecular feature-based identification of tumor subpopulations associated with tumor aggressiveness. Here, using spatial metabolomics by high-mass resolution MALDI Fourier transform ion cyclotron resonance mass spectrometry imaging, we assessed metabolic heterogeneity by de novo discovery of metabolic subpopulations and Simpson's diversity index. After identification of tumor subpopulations in 72 patients with ACC, we additionally performed a comparison with 25 tissue sections of normal adrenal cortex to identify their common and unique metabolic subpopulations. We observed variability of ACC tumor heterogeneity and correlation of high metabolic heterogeneity with worse clinical outcome. Moreover, we identified tumor subpopulations that served as independent prognostic factors and, furthermore, discovered 4 associated anticancer drug action pathways. Our research may facilitate comprehensive understanding of the biological implications of tumor subpopulations in ACC and showed that metabolic heterogeneity might impact chemotherapy

    Dusp8 affects hippocampal size and behavior in mice and humans

    Get PDF
    Dual-specificity phosphatase 8 (Dusp8) acts as physiological inhibitor for the MAPKs Jnk, Erk and p38 which are involved in regulating multiple CNS processes. While Dusp8 expression levels are high in limbic areas such as the hippocampus, the functional role of Dusp8 in hippocampus morphology, MAPK-signaling, neurogenesis and apoptosis as well as in behavior are still unclear. It is of particular interest whether human carriers of a DUSP8 allelic variant show similar hippocampal alterations to mice. Addressing these questions using Dusp8WT and KO mouse littermates, we found that KOs suffered from mildly impaired spatial learning, increased locomotor activity and elevated anxiety. Cell proliferation, apoptosis and p38 and Jnk phosphorylation were unaffected, but phospho-Erk levels were higher in hippocampi of the KOs. Consistent with a decreased hippocampus size in Dusp8 KO mice, we found reduced volumes of the hippocampal subregions subiculum and CA4 in humans carrying the DUSP8 allelic variant SNP rs2334499:C > T. Overall, aberrations in morphology and behavior in Dusp8 KO mice and a decrease in hippocampal volume of SNP rs2334499:C > T carriers point to a novel, translationally relevant role of Dusp8 in hippocampus function that warrants further studies on the role of Dusp8 within the limbic network

    Global, neuronal or β cell-specific deletion of inceptor improves glucose homeostasis in male mice with diet-induced obesity

    Get PDF
    Insulin resistance is an early complication of diet-induced obesity (DIO)1, potentially leading to hyperglycaemia and hyperinsulinaemia, accompanied by adaptive beta cell hypertrophy and development of type 2 diabetes2. Insulin not only signals via the insulin receptor (INSR), but also promotes beta cell survival, growth and function via the insulin-like growth factor 1 receptor (IGF1R)3-6. We recently identified the insulin inhibitory receptor (inceptor) as the key mediator of IGF1R and INSR desensitization7. But, although beta cell-specific loss of inceptor improves beta cell function in lean mice7, it warrants clarification whether inceptor signal inhibition also improves glycaemia under conditions of obesity. We assessed the glucometabolic effects of targeted inceptor deletion in either the brain or the pancreatic beta cells under conditions of DIO in male mice. In the present study, we show that global and neuronal deletion of inceptor, as well as its adult-onset deletion in the beta cells, improves glucose homeostasis by enhancing beta cell health and function. Moreover, we demonstrate that inceptor-mediated improvement in glucose control does not depend on inceptor function in agouti-related protein-expressing or pro-opiomelanocortin neurons. Our data demonstrate that inceptor inhibition improves glucose homeostasis in mice with DIO, hence corroborating that inceptor is a crucial regulator of INSR and IGF1R signalling. In male mice with diet-induced obesity, deletion of insulin inhibitory receptor (inceptor) in the whole body, in the brain and in pancreatic beta cells improves glucose homeostasis, underlining a role of inceptor in regulating glucose homeostasis in the brain and pancreas

    Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism

    Get PDF
    BACKGROUND. Adrenal aldosterone excess is the most common cause of secondary hypertension and is associated with increased cardiovascular morbidity. However, adverse metabolic risk in primary aldosteronism extends beyond hypertension, with increased rates of insulin resistance, type 2 diabetes, and osteoporosis, which cannot be easily explained by aldosterone excess. METHODS. We performed mass spectrometry–based analysis of a 24-hour urine steroid metabolome in 174 newly diagnosed patients with primary aldosteronism (103 unilateral adenomas, 71 bilateral adrenal hyperplasias) in comparison to 162 healthy controls, 56 patients with endocrine inactive adrenal adenoma, 104 patients with mild subclinical, and 47 with clinically overt adrenal cortisol excess. We also analyzed the expression of cortisol-producing CYP11B1 and aldosterone-producing CYP11B2 enzymes in adenoma tissue from 57 patients with aldosterone-producing adenoma, employing immunohistochemistry with digital image analysis. RESULTS. Primary aldosteronism patients had significantly increased cortisol and total glucocorticoid metabolite excretion (all P < 0.001), only exceeded by glucocorticoid output in patients with clinically overt adrenal Cushing syndrome. Several surrogate parameters of metabolic risk correlated significantly with glucocorticoid but not mineralocorticoid output. Intratumoral CYP11B1 expression was significantly associated with the corresponding in vivo glucocorticoid excretion. Unilateral adrenalectomy resolved both mineralocorticoid and glucocorticoid excess. Postoperative evidence of adrenal insufficiency was found in 13 (29%) of 45 consecutively tested patients. CONCLUSION. Our data indicate that glucocorticoid cosecretion is frequently found in primary aldosteronism and contributes to associated metabolic risk. Mineralocorticoid receptor antagonist therapy alone may not be sufficient to counteract adverse metabolic risk in medically treated patients with primary aldosteronism
    corecore