9 research outputs found

    Quantifying the impact of AI recommendations with explanations on prescription decision making

    Get PDF
    The influence of AI recommendations on physician behaviour remains poorly characterised. We assess how clinicians' decisions may be influenced by additional information more broadly, and how this influence can be modified by either the source of the information (human peers or AI) and the presence or absence of an AI explanation (XAI, here using simple feature importance). We used a modified between-subjects design where intensive care doctors (N=86) were presented on a computer for each of 16 trials with a patient case and prompted to prescribe continuous values for two drugs. We used a multi-factorial experimental design with four arms, where each clinician experienced all four arms on different subsets of our 24 patients. The four arms were (i) baseline (control), (ii) peer human clinician scenario showing what doses had been prescribed by other doctors, (iii) AI suggestion and (iv) XAI suggestion. We found that additional information (peer, AI or XAI) had a strong influence on prescriptions (significantly for AI, not so for peers) but simple XAI did not have higher influence than AI alone. There was no correlation between attitudes to AI or clinical experience on the AI-supported decisions and nor was there correlation between what doctors self-reported about how useful they found the XAI and whether the XAI actually influenced their prescriptions. Our findings suggest that the marginal impact of simple XAI was low in this setting and we also cast doubt on the utility of self-reports as a valid metric for assessing XAI in clinical experts

    MIDAS: Deep learning human action intention prediction from natural eye movement patterns

    Get PDF
    Eye movements have long been studied as a window into the attentional mechanisms of the human brain and made accessible as novelty style human-machine interfaces. However, not everything that we gaze upon, is something we want to interact with; this is known as the Midas Touch problem for gaze interfaces. To overcome the Midas Touch problem, present interfaces tend not to rely on natural gaze cues, but rather use dwell time or gaze gestures. Here we present an entirely data-driven approach to decode human intention for object manipulation tasks based solely on natural gaze cues. We run data collection experiments where 16 participants are given manipulation and inspection tasks to be performed on various objects on a table in front of them. The subjects' eye movements are recorded using wearable eye-trackers allowing the participants to freely move their head and gaze upon the scene. We use our Semantic Fovea, a convolutional neural network model to obtain the objects in the scene and their relation to gaze traces at every frame. We then evaluate the data and examine several ways to model the classification task for intention prediction. Our evaluation shows that intention prediction is not a naive result of the data, but rather relies on non-linear temporal processing of gaze cues. We model the task as a time series classification problem and design a bidirectional Long-Short-Term-Memory (LSTM) network architecture to decode intentions. Our results show that we can decode human intention of motion purely from natural gaze cues and object relative position, with 91.9%91.9\% accuracy. Our work demonstrates the feasibility of natural gaze as a Zero-UI interface for human-machine interaction, i.e., users will only need to act naturally, and do not need to interact with the interface itself or deviate from their natural eye movement patterns

    Enabling risk-aware Reinforcement Learning for medical interventions through uncertainty decomposition

    No full text
    Reinforcement Learning (RL) is emerging as tool for tackling complex control and decision-making problems. However, in high-risk environments such as healthcare, manufacturing, automotive or aerospace, it is often challenging to bridge the gap between an apparently optimal policy learned by an agent and its real-world deployment, due to the uncertainties and risk associated with it. Broadly speaking RL agents face two kinds of uncertainty, 1. aleatoric uncertainty, which reflects randomness or noise in the dynamics of the world, and 2. epistemic uncertainty, which reflects the bounded knowledge of the agent due to model limitations and finite amount of information/data the agent has acquired about the world. These two types of uncertainty carry fundamentally different implications for the evaluation of performance and the level of risk or trust. Yet these aleatoric and epistemic uncertainties are generally confounded as standard and even distributional RL is agnostic to this difference. Here we propose how a distributional approach (UA-DQN) can be recast to render uncertainties by decomposing the net effects of each uncertainty . We demonstrate the operation of this method in grid world examples to build intuition and then show a proof of concept application for an RL agent operating as a clinical decision support system in critical care

    Managing new networked worlds - A report on IM 2005

    No full text

    Assuring the safety of AI-based clinical decision support systems: a case study of the AI Clinician for sepsis treatment

    Get PDF
    Study objectives: Establishing confidence in the safety of AI-based clinical decision support systems is important prior to clinical deployment and regulatory approval for systems with increasing autonomy. Here, we undertook safety assurance of the AI Clinician, a previously published reinforcement learning-based treatment recommendation system for sepsis. Methods: As part of the safety assurance, we defined four clinical hazards in sepsis resuscitation based on clinical expert opinion and the existing literature. We then identified a set of unsafe scenarios and created safety constraints, intended to limit the action space of the AI agent with the goal of reducing the likelihood of hazardous decisions. Results: Using a subset of the MIMIC-III database, we demonstrated that our previously published “AI Clinician” recommended fewer hazardous decisions than human clinicians in three out of our four pre-defined clinical scenarios, while the difference was not statistically significant in the fourth scenario. Then, we modified the reward function to satisfy our safety constraints and trained a new AI Clinician agent. The retrained model shows enhanced safety, without negatively impacting model performance. Discussion: While some contextual patient information absent from the data may have pushed human clinicians to take hazardous actions, the data was curated to limit the impact of this confounder. Conclusion: These advances provide a use case for the systematic safety assurance of AI-based clinical systems, towards the generation of explicit safety evidence, which could be replicated for other AI applications or other clinical contexts, and inform medical device regulatory bodies
    corecore