1,059 research outputs found

    Improved Modeling of System Response in List Mode EM Reconstruction of Compton Scatter Camera Images

    Full text link
    An improved List Mode EM method for reconstructing Compton scattering camera images has been developed. First, an approximate method for computation of the spatial variation in the detector sensitivity has been derived and validated by Monte Carlo computation. A technique for estimating the relative weight of system matrix coefficients for each gamma in the list has also been employed, as has a method for determining the relative probabilities of emission having some from pixels tallied in each list-mode back-projection. Finally, a technique has been developed for modeling the effects of Doppler broadening and finite detector energy resolution on the relative weights for pixels neighbor to those intersected by the back-projection, based on values for the FWHM of the spread in the cone angle computed by Monte Carlo. Memory issues typically associated with list mode reconstruction are circumvented by storing only a list of the pixels intersected by the back-projections, and computing the weights of the neighboring pixels at each iteration step. Simulated projection data has been generated for a representative Compton camera system (CSPRINT) for several source distributions and reconstructions performed. Reconstructions have also been performed for experimental data for distributed sources.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86027/1/Fessler157.pd

    Feasibility Study of Compton Scattering Enchanced Multiple Pinhole Imager for Nuclear Medicine

    Full text link
    This paper presents a feasibility study of a Compton scattering enhanced (CSE) multiple pinhole imaging system for gamma rays with energy of 140 keV or higher. This system consists of a multiple-pinhole collimator, a position sensitive scintillation detector as used in a standard gamma camera, and a Si pad detector array, inserted between the collimator and the scintillation detector. The problem of multiplexing, normally associated with multiple pinhole system, is reduced by using the extra information from the detected Compton scattering events. In order to compensate for the sensitivity loss, due to the low probability of detecting Compton scattered events, the proposed detector is designed to collect both Compton scattering and non-Compton events. It has been shown that with properly selected pinhole spacing, the proposed detector design leads to an improved image quality.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86012/1/Fessler64.pd

    List-Mode Maximum Likelihood Reconstruction of Compton Scatter Camera Images in Nuclear Medicine

    Full text link
    A Maximum Likelihood (ML) image reconstruction technique using list-mode data has been applied to Compton scattering camera imaging. List-mode methods are appealing in Compton camera image reconstruction because the total number of data elements in the list (the number of detected photons) is significantly smaller than the number of possible combinations of position and energy measurements, leading to a much smaller problem than that faced by traditional iterative reconstruction techniques. For a realistic size device, the number of possible detector bins can be as large as 10 billion per pixel of the image space, while the number of counted photons would typically be a very small fraction of that. The primary difficulty in applying the list-mode technique is in determining the parameters which describe the response of the imaging system. In this work, a simple method for determining the required system matrix coefficients is employed, in which a back-projection is performed in list-mode, and response coefficients determined for only tallied pixels. Projection data has been generated for a representative Compton camera system by Monte Carlo simulation for disk sources with hot and cold spots and energies of 141, 364, and 511 keV, and reconstructions performed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85815/1/Fessler155.pd

    Regularized reconstruction in quantitative SPECT using CT side information from hybrid imaging

    Full text link
    A penalized-likelihood (PL) SPECT reconstruction method using a modified regularizer that accounts for anatomical boundary side information was implemented to achieve accurate estimates of both the total target activity and the activity distribution within targets. In both simulations and experimental I-131 phantom studies, reconstructions from (1) penalized likelihood employing CT-side information-based regularization (PL-CT), (2) penalized likelihood with edge preserving regularization (no CT) and (3) penalized likelihood with conventional spatially invariant quadratic regularization (no CT) were compared with (4) ordered subset expectation maximization (OSEM), which is the iterative algorithm conventionally used in clinics for quantitative SPECT. Evaluations included phantom studies with perfect and imperfect side information and studies with uniform and non-uniform activity distributions in the target. For targets with uniform activity, the PL-CT images and profiles were closest to the 'truth', avoided the edge offshoots evident with OSEM and minimized the blurring across boundaries evident with regularization without CT information. Apart from visual comparison, reconstruction accuracy was evaluated using the bias and standard deviation (STD) of the total target activity estimate and the root mean square error (RMSE) of the activity distribution within the target. PL-CT reconstruction reduced both bias and RMSE compared with regularization without side information. When compared with unregularized OSEM, PL-CT reduced RMSE and STD while bias was comparable. For targets with non-uniform activity, these improvements with PL-CT were observed only when the change in activity was matched by a change in the anatomical image and the corresponding inner boundary was also used to control the regularization. In summary, the present work demonstrates the potential of using CT side information to obtain improved estimates of the activity distribution in targets without sacrificing the accuracy of total target activity estimation. The method is best suited for data acquired on hybrid systems where SPECT-CT misregistration is minimized. To demonstrate clinical application, the PL reconstruction with CT-based regularization was applied to data from a patient who underwent SPECT/CT imaging for tumor dosimetry following I-131 radioimmunotherapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85409/1/pmb10_9_007.pd

    List Mode EM Reconstruction of Compton Scatter Camera Images in 3-D

    Full text link
    A method has been developed for List Mode EM reconstruction of Compton scattering camera images in 3D, using a previously reported 2-D technique and refining and adapting it to three dimensions. Spatial variation in the system sensitivity is determined by an approximate numerical integration which accounts for solid angle effects, absorption and escape probabilities, and variation in the differential angular scattering cross section. The method for computing the system transition probabilities uses a similar method to determine values in pixels along exact back-projected cones for each detected event, and uses pre-computed values of the inherent system resolution (which includes the effects of spatial and energy measurement resolution and Doppler broadening) to model the response in pixels neighboring the back-projected cone. The algorithm has been parallelized, permitting reconstruction of images using larger number of detected events in relatively constant time by adding additional processors. Results are presented using 3-D simulated data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85814/1/Fessler162.pd

    Improved Modeling of System Response in List Mode EM Reconstruction of Compton Scatter Camera Images

    Full text link
    An improved List Mode EM method for reconstructing Compton scattering camera images has been developed. First, an approximate method for computation of the spatial variation in the detector sensitivity has been derived and validated by Monte Carlo computation. A technique for estimating the relative weight of system matrix coefficients for each gamma in the list has also been employed, as has a method for determining the relative probabilities of emission having come from pixels tallied in each list-mode back-projection. Finally, a technique has been developed for modeling the effects of Doppler broadening and finite detector energy resolution on the relative weights for pixels neighbor to those intersected by the back-projection, based on values for the FWHM of the spread in the cone angle computed by Monte Carlo. Memory issues typically associated with list mode reconstruction are circumvented by storing only a list of the pixels intersected by the back-projections, and computing the weights of the neighboring pixels at each iteration step. Reconstructions have been performed on experimental data for both point and distributed sourcesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86026/1/Fessler77.pd
    • …
    corecore