30 research outputs found

    Spacecraft command verification: The AI solution

    Get PDF
    Recently, a knowledge-based approach was used to develop a system called the Command Constraint Checker (CCC) for TRW. CCC was created to automate the process of verifying spacecraft command sequences. To check command files by hand for timing and sequencing errors is a time-consuming and error-prone task. Conventional software solutions were rejected when it was estimated that it would require 36 man-months to build an automated tool to check constraints by conventional methods. Using rule-based representation to model the various timing and sequencing constraints of the spacecraft, CCC was developed and tested in only three months. By applying artificial intelligence techniques, CCC designers were able to demonstrate the viability of AI as a tool to transform difficult problems into easily managed tasks. The design considerations used in developing CCC are discussed and the potential impact of this system on future satellite programs is examined

    Fault Management Architectures and the Challenges of Providing Software Assurance

    Get PDF
    Fault Management (FM) is focused on safety, the preservation of assets, and maintaining the desired functionality of the system. How FM is implemented varies among missions. Common to most missions is system complexity due to a need to establish a multi-dimensional structure across hardware, software and spacecraft operations. FM is necessary to identify and respond to system faults, mitigate technical risks and ensure operational continuity. Generally, FM architecture, implementation, and software assurance efforts increase with mission complexity. Because FM is a systems engineering discipline with a distributed implementation, providing efficient and effective verification and validation (V&V) is challenging. A breakout session at the 2012 NASA Independent Verification & Validation (IV&V) Annual Workshop titled "V&V of Fault Management: Challenges and Successes" exposed this issue in terms of V&V for a representative set of architectures. NASA's Software Assurance Research Program (SARP) has provided funds to NASA IV&V to extend the work performed at the Workshop session in partnership with NASA's Jet Propulsion Laboratory (JPL). NASA IV&V will extract FM architectures across the IV&V portfolio and evaluate the data set, assess visibility for validation and test, and define software assurance methods that could be applied to the various architectures and designs. This SARP initiative focuses efforts on FM architectures from critical and complex projects within NASA. The identification of particular FM architectures and associated V&V/IV&V techniques provides a data set that can enable improved assurance that a system will adequately detect and respond to adverse conditions. Ultimately, results from this activity will be incorporated into the NASA Fault Management Handbook providing dissemination across NASA, other agencies and the space community. This paper discusses the approach taken to perform the evaluations and preliminary findings from the research

    On-board fault management for autonomous spacecraft

    Get PDF
    The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft

    Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions

    Get PDF
    Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the findings and recommendations from that workshop, particularly as fault management development issues affect operations and the development of operations capabilities

    Demonstrating high-precision photometry with a CubeSat: ASTERIA observations of 55 Cancri e

    Get PDF
    ASTERIA (Arcsecond Space Telescope Enabling Research In Astrophysics) is a 6U CubeSat space telescope (10 cm x 20 cm x 30 cm, 10 kg). ASTERIA's primary mission objective was demonstrating two key technologies for reducing systematic noise in photometric observations: high-precision pointing control and high-stabilty thermal control. ASTERIA demonstrated 0.5 arcsecond RMS pointing stability and ±\pm10 milliKelvin thermal control of its camera payload during its primary mission, a significant improvement in pointing and thermal performance compared to other spacecraft in ASTERIA's size and mass class. ASTERIA launched in August 2017 and deployed from the International Space Station (ISS) November 2017. During the prime mission (November 2017 -- February 2018) and the first extended mission that followed (March 2018 - May 2018), ASTERIA conducted opportunistic science observations which included collection of photometric data on 55 Cancri, a nearby exoplanetary system with a super-Earth transiting planet. The 55 Cancri data were reduced using a custom pipeline to correct CMOS detector column-dependent gain variations. A Markov Chain Monte Carlo (MCMC) approach was used to simultaneously detrend the photometry using a simple baseline model and fit a transit model. ASTERIA made a marginal detection of the known transiting exoplanet 55 Cancri e (∼2\sim2~\Rearth), measuring a transit depth of 374±170374\pm170 ppm. This is the first detection of an exoplanet transit by a CubeSat. The successful detection of super-Earth 55 Cancri e demonstrates that small, inexpensive spacecraft can deliver high-precision photometric measurements.Comment: 23 pages, 9 figures. Accepted in A

    Advancing the Scientific Frontier with Increasingly Autonomous Systems

    Full text link
    A close partnership between people and partially autonomous machines has enabled decades of space exploration. But to further expand our horizons, our systems must become more capable. Increasing the nature and degree of autonomy - allowing our systems to make and act on their own decisions as directed by mission teams - enables new science capabilities and enhances science return. The 2011 Planetary Science Decadal Survey (PSDS) and on-going pre-Decadal mission studies have identified increased autonomy as a core technology required for future missions. However, even as scientific discovery has necessitated the development of autonomous systems and past flight demonstrations have been successful, institutional barriers have limited its maturation and infusion on existing planetary missions. Consequently, the authors and endorsers of this paper recommend that new programmatic pathways be developed to infuse autonomy, infrastructure for support autonomous systems be invested in, new practices be adopted, and the cost-saving value of autonomy for operations be studied.Comment: 10 pages (compared to 8 submitted to PSADS), 2 figures, submitted to National Academy of Sciences Planetary Science and Astrobiology Decadal Survey 2023-203

    HD 219134 Revisited: Planet d Transit Upper Limit and Planet f Transit Nondetection with ASTERIA and TESS

    Get PDF
    HD 219134 is a K3V dwarf star with six reported radial-velocity discovered planets. The two innermost planets b and c show transits, raising the possibility of this system to be the nearest (6.53 pc), brightest (V = 5.57) example of a star with a compact multiple transiting planet system. Ground-based searches for transits of planets beyond b and c are not feasible because of the infrequent transits, long transit duration (~5 hr), shallow transit depths (<1%), and large transit time uncertainty (~half a day). We use the space-based telescopes the Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) and the Transiting Exoplanet Survey Satellite (TESS) to search for transits of planets f (P = 22.717 days and M sin i = 7.3 ± 0.04M_⊕) and d (P = 46.859 days and M sin i = 16.7 ± 0.64M_⊕). ASTERIA was a technology demonstration CubeSat with an opportunity for science in an extended program. ASTERIA observations of HD 219134 were designed to cover the 3σ transit windows for planets f and d via repeated visits over many months. While TESS has much higher sensitivity and more continuous time coverage than ASTERIA, only the HD 219134 f transit window fell within the TESS survey's observations. Our TESS photometric results definitively rule out planetary transits for HD 219134 f. We do not detect the Neptune-mass HD 219134 d transits and our ASTERIA data are sensitive to planets as small as 3.6 R_⊕. We provide TESS updated transit times and periods for HD 219134 b and c, which are designated TOI 1469.01 and 1469.02 respectively

    V&V of Fault Management: Challenges and Successes

    No full text
    No abstract availabl

    The Development of NASA's Fault Management Handbook

    No full text
    Disciplined approach to Fault Management (FM) has not always been emphasized by projects, contributing to major schedule and cost overruns: (1) Often faults aren't addressed until nominal spacecraft design is fairly stable. (2) Design relegated to after-the-fact patchwork, Band-Aid approach. Progress is being made on a number of fronts outside of Handbook effort: (1) Processes, Practices and Tools being developed at some Centers and Institutions (2) Management recognition. Constellation FM roles, Discovery/New Frontiers mission reviews (3) Potential Technology solutions. New approaches could avoid many current pitfalls (3a) New FM architectures, including model-based approach integrated with NASA's MBSE (Model-Based System Engineering) efforts (3b) NASA's Office of the Chief Technologist: FM identified in seven of NASA's 14 Space Technology Roadmaps. Opportunity to coalesce and establish thrust area to progressively develop new FM techniques. FM Handbook will help ensure that future missions do not encounter same FM-related problems as previous missions. Version 1 of the FM Handbook is a good start: (1) Still need Version 2 Agency-wide FM Handbook to expand Handbook to other areas, especially crewed missions. (2) Still need to reach out to other organizations to develop common understanding and vocabulary. Handbook doesn't/can't address all Workshop recommendations. Still need to identify how to address programmatic and infrastructure issues
    corecore