4 research outputs found

    Influence of Anthropogenic Subsidies on Movements of Common Ravens

    Get PDF
    Anthropogenic subsidies can benefit populations of generalist predators such as common ravens (ravens; Corvus corax), which in turn may depress populations of many types of species at lower-trophic levels, including desert tortoises (Gopherus agassizii) or greater sage-grouse (Centrocercus urophasianus). Management of subsidized ravens often has targeted local breeding populations that are presumed to affect species of concern and ignored “urban” populations of ravens. However, little is known about how ravens move, especially in response to the presence of anthropogenic subsidies. Therefore, subsidized ravens from distant populations that are not managed may influence local prey. To better understand this issue, we deployed global positioning system – global system for mobile communications transmitters to track movements of 19 ravens from September to December 2020 relative to 2 land cover types that provide subsidies: developed areas and cultivated crops. On average, ravens moved 41.5 km (±30.5) per day, although daily movement distances ranged from 0.13–206.1 km. Raven movement among cover types during the non-breeding season varied widely, with 100% of individuals each using land cover types that provide subsidy and other types at least once in the season. On 100% of days ravens used areas that did not provide subsidy, on 86.7% of days they used developed areas, and on 20.5% of days they used cultivated crops. Although on some days a raven would stay exclusively in areas that did not provide subsidy, there were no days in which a single raven ever stayed exclusively in developed or cultivated crops. Ravens moved shorter distances on days when they used subsidies more frequently. Further, time spent in developed areas and cultivated crops increased when ravens roosted closer to them, although this effect was greater for developed areas than for cultivated crops. Individual ravens were not associated exclusively with either of the subsidy-providing landscapes we considered, but instead all birds used both subsidized and other landscapes. Our research suggests that management of ravens during the non-breeding season and possibly during the breeding season, intended to reduce risk of predation on desert tortoises, will be most effective if conducted on a broad scale because of distances the birds travel and the lack of separation between putative “urban” and “natural” populations of ravens

    Vulnerability of avian populations to renewable energy production

    No full text
    Renewable energy production can kill individual birds, but little is known about how it affects avian populations. We assessed the vulnerability of populations for 23 priority bird species killed at wind and solar facilities in California, USA. Bayesian hierarchical models suggested that 48% of these species were vulnerable to population-level effects from added fatalities caused by renewables and other sources. Effects of renewables extended far beyond the location of energy production to impact bird populations in distant regions across continental migration networks. Populations of species associated with grasslands where turbines were located were most vulnerable to wind. Populations of nocturnal migrant species were most vulnerable to solar, despite not typically being associated with deserts where the solar facilities we evaluated were located. Our findings indicate that addressing declines of North American bird populations requires consideration of the effects of renewables and other anthropogenic threats on both nearby and distant populations of vulnerable species
    corecore