626 research outputs found
Feshbach resonances in ultracold ^{6,7}Li + ^{23}Na atomic mixtures
We report a theoretical study of Feshbach resonances in Li + Na
and Li + Na mixtures at ultracold temperatures using new accurate
interaction potentials in a full quantum coupled-channel calculation. Feshbach
resonances for in the initial collisional open channel LiNa are found to agree with previous
measurements, leading to precise values of the singlet and triplet scattering
lengths for the LiNa pairs. We also predict additional Feshbach
resonances within experimentally attainable magnetic fields for other collision
channels.Comment: 4 pages, 3 figure
Vortex line in a neutral finite-temperature superfluid Fermi gas
The structure of an isolated vortex in a dilute two-component neutral
superfluid Fermi gas is studied within the context of self-consistent
Bogoliubov-de Gennes theory. Various thermodynamic properties are calculated
and the shift in the critical temperature due to the presence of the vortex is
analyzed. The gapless excitations inside the vortex core are studied and a
scheme to detect these states and thus the presence of the vortex is examined.
The numerical results are compared with various analytical expressions when
appropriate.Comment: 8 pages, 6 embedded figure
Control of Ultra-cold Inelastic Collisions by Feshbash Resonances and Quasi-One-Dimensional Confinement
Cold inelastic collisions of atoms or molecules are analyzed using very
general arguments. In free space, the deactivation rate can be enhanced or
suppressed together with the scattering length of the corresponding elastic
collision via a Feshbach resonance, and by interference of deactivation of the
closed and open channels. In reduced dimensional geometries, the deactivation
rate decreases with decreasing collision energy and does not increase with
resonant elastic scattering length. This has broad implications; e.g.,
stabilization of molecules in a strongly confining two-dimensional optical
lattice, since collisional decay of the highly vibrationally excited states due
to inelastic collisions is suppressed. The relation of our results with those
based on the Lieb-Liniger model are addressed.Comment: 5 pages, 1 figur
Coherent population trapping and dynamical instability in the nonlinearly coupled atom-molecule system
We study the possibility of creating a coherent population trapping (CPT)
state, involving free atomic and ground molecular condensates, during the
process of associating atomic condensate into molecular condensate. We
generalize the Bogoliubov approach to this multi-component system and study the
collective excitations of the CPT state in the homogeneous limit. We develop a
set of analytical criteria based on the relationship among collisions involving
atoms and ground molecules, which are found to strongly affect the stability
properties of the CPT state, and use it to find the stability diagram and to
systematically classify various instabilities in the long-wavelength limit.Comment: 11 pages, 8 figure
Doorway states in nuclear reactions as a manifestation of the "super-radiant" mechanism
A mechanism is considered for generating doorway states and intermediate
structure in low-energy nuclear reactions as a result of collectivization of
widths of unstable intrinsic states coupled to common decay channels. At the
limit of strong continuum coupling, the segregation of broad
(''super-radiating") and narrow (''trapped") states occurs revealing the
separation of direct and compound processes. We discuss the conditions for the
appearance of intermediate structure in this process and doorways related to
certain decay channels.Comment: 16 page
Dynamical coupled-channels analysis of 1H(e,e'pi)N reactions
We have performed a dynamical coupled-channels analysis of available
p(e,e'pi)N data in the region of W < 1.6 GeV and Q^2 < 1.45 (GeV/c)^2. The
channels included are gamma^* N, pi N, eta N, and pi pi N which has pi Delta,
rho N, and sigma N components. With the hadronic parameters of the model
determined in our previous investigations of pi N --> pi N, pi pi N reactions,
we have found that the available data in the considered W < 1.6 GeV region can
be fitted well by only adjusting the bare gamma^* N --> N^* helicity amplitudes
for the lowest N^* states in P33, P11, S11 and D13 partial waves. The
sensitivity of the resulting parameters to the amount of data included in the
analysis is investigated. The importance of coupled-channels effect on the
p(e,e' pi)N cross sections is demonstrated. The meson cloud effects, as
required by the unitarity conditions, on the gamma^* N --> N^* form factors are
also examined. Necessary future developments, both experimentally and
theoretically, are discussed.Comment: 14 pages, 11 figures. Version to appear in PR
Breathing mode frequencies of a rotating Fermi gas in the BCS-BEC crossover region
We study the breathing mode frequencies of a rotating Fermi gas trapped in a
harmonic plus radial quartic potential. We find that as the radial
anharmonicity increases, the lowest order radial mode frequency increases while
the next lowest order radial mode frequency decreases. Then at a critical
anharmonicity, these two modes merge and beyond this merge the cloud is
unstable against the oscillations. The critical anharmonicity depends on both
rotational frequency and the chemical potential. As a result of the large
chemical potential in the BCS regime, even with a weak anharmonicity the lowest
order mode frequency increases with decreasing the attractive interaction. For
large enough anharmonicities in the weak coupling BCS limit, we find that the
excitation of the breathing mode frequencies make the atomic cloud unstable.Comment: 6 pages, 8 fiqures. Formalism is modified to include the effect of
negative quartic potentia
Theory of parity violation in compound nuclear states; one particle aspects
In this work we formulate the reaction theory of parity violation in compound
nuclear states using Feshbach's projection operator formalism. We derive in
this framework a complete set of terms that contribute to the longitudinal
asymmetry measured in experiments with polarized epithermal neutrons. We also
discuss the parity violating spreading width resulting from this formalism. We
then use the above formalism to derive expressions which hold in the case when
the doorway state approximation is introduced. In applying the theory we limit
ourselves in this work to the case when the parity violating potential and the
strong interaction are one-body. In this approximation, using as the doorway
the giant spin-dipole resonance and employing well known optical potentials and
a time-reversal even, parity odd one-body interaction we calculate or estimate
the terms we derived. In our calculations we explicitly orthogonalize the
continuum and bound wave functions. We find the effects of orthogonalization to
be very important. Our conclusion is that the present one-body theory cannot
explain the average longitudinal asymmetry found in the recent polarized
neutron experiments. We also confirm the discrepancy, first pointed out by
Auerbach and Bowman, that emerges, between the calculated average asymmetry and
the parity violating spreading width, when distant doorways are used in the
theory.Comment: 37 pages, REVTEX, 5 figures not included (Postscript, available from
the authors
Green's Function for Nonlocal Potentials
The single-particle nuclear potential is intrinsically nonlocal. In this
paper, we consider nonlocalities which arise from the many-body and fermionic
nature of the nucleus. We investigate the effects of nonlocality in the nuclear
potential by developing the Green's function for nonlocal potentials. The
formal Green's function integral is solved analytically in two different limits
of the wavelength as compared to the scale of nonlocality. Both results are
studied in a quasi-free limit. The results illuminate some of the basic effects
of nonlocality in the nuclear medium.Comment: Accepted for publication in J. Phys.
Fine Structure Discussion of Parity-Nonconserving Neutron Scattering at Epithermal Energies
The large magnitude and the sign correlation effect in the parity
non-conserving resonant scattering of epithermal neutrons from Th is
discussed in terms of a non-collective local doorway model. General
conclusions are drawn as to the probability of finding large parity violation
effects in other regions of the periodic table.Comment: 6 pages, Tex. CTP# 2296, to appear in Z. Phys.
- âŠ