420 research outputs found

    Augmenting human gamma delta lymphocytes for cancer therapy with chimeric antigen receptors

    Get PDF
    Gamma delta lymphocytes (γδ T) sit at the interface between innate and adaptive immunity. They have the capacity to recognize cancer cells by interaction of their surface receptors with an array of cancer cell surface target antigens. Interactions include the binding of γδ T cell receptors, the ligands for which are diverse and do not involve classical major histocompatibility complex (MHC) molecules. Moreover, a variety of natural killer-like and fragment crystallizable gamma (Fcγ) receptors confer additional cancer reactivity. Given this innate capacity to recognize and kill cancer cells, there appears less rationale for redirecting specific to cancer cell surface antigens through chimeric antigen receptor (CAR) expression. Several groups have however reported research findings that expression of CARs in γδ T cells can confer additional specificity or functionality. Though limited in number, these studies collectively identify the potential of CAR-T engineering to augment and fine tune anti-cancer responses. Together with the lack of graft versus host disease induced by allogeneic γδ T cells, these insights should encourage researchers to explore additional γδ T-CAR refinements for the development of off-the-shelf anti-cancer cell therapies

    Sexual behaviour in the face of risk : preliminary results from first AIDS-related surveys

    No full text
    Preliminary results are presented from nationally representative surveys of the adult populations of five African countries, conducted in 1989 and 1990. General awareness of AIDS was high, as was knowledge of sexual transmission. In four of the five surveys, large proportions, from 25 to 64 per cent, of both men and women perceived themselves to have a high or moderate risk of HIV infection. High proportions also reported that they had modified their behaviour typically by more care in selecting partners or greater faithfulness. Greater use of condoms was mentioned rarely. The results, particularly on behavioural change, should not be interpreted literally. But the fact that so many report modification of behaviour at least suggests a willingness to contemplate the need for change. The prognosis would have been much worse, had these surveys indicated widespread denial of risk and unwillingness to consider changes in behaviour

    A Simple and Robust Single-Step Method for CAR-Vδ1 γδT Cell Expansion and Transduction for Cancer Immunotherapy

    Get PDF
    The γδT cell subset of peripheral lymphocytes exhibits potent cancer antigen recognition independent of classical peptide MHC complexes, making it an attractive candidate for allogeneic cancer adoptive immunotherapy. The Vδ1-T cell receptor (TCR)-expressing subset of peripheral γδT cells has remained enigmatic compared to its more prevalent Vγ9Vδ2-TCR and αβ-TCR-expressing counterparts. It took until 2021 before a first patient was dosed with an allogeneic adoptive Vδ1 cell product despite pre-clinical promise for oncology indications stretching back to the 1980s. A contributing factor to the paucity of clinical progress with Vδ1 cells is the lack of robust, consistent and GMP-compatible expansion protocols. Herein we describe a reproducible one-step, clinically translatable protocol for Vδ1-γδT cell expansion from peripheral blood mononuclear cells (PBMCs), that is further compatible with high-efficiency gene engineering for immunotherapy purposes. Briefly, αβTCR- and CD56-depleted PBMC stimulation with known-in-the-art T cell stimulators, anti-CD3 mAb (clone: OKT-3) and IL-15, leads to robust Vδ1 cell expansion of high purity and innate-like anti-tumor efficacy. These Vδ1 cells can be virally transduced to express chimeric antigen receptors (CARs) using standard techniques, and the CAR-Vδ1 exhibit antigen-specific persistence, cytotoxicity and produce IFN-γ. Practicable, GMP-compatible engineered Vδ1 cell expansion methods will be crucial to the wide-spread clinical testing of these cells for oncology indications

    Calibration and applications of the dolomite clumped isotope thermometer to high temperatures

    Get PDF
    Carbonate clumped isotope paleothermometry is based on the temperature-dependent formation of ^(13)C^(18)O^(16)O_2 ^(2-) ion groups within solid carbonate minerals. This thermometer has now been calibrated for various synthetic and natural biogenic and abiogenic minerals (calcite, aragonite and carbonateapatites [e.g., 1, 2]) at temperatures below ~ 50°C. Here we extend the use of the carbonate clumped isotope thermometer to shallow crustal environments by determining the Δ_(47) values of CO_2 extracted from natural and synthetic dolomites grown at know temperatures from 25 to 350ºC. The experimental temperature dependance is not linear in the Δ_(47) vs T^(-2) plot and resembles the predicted theoretical temperature dependence, both in shape and absolute value [3]. These data for synthetic dolomites overlap the previous calibrations for inorganic calcite and some forms of biogenic carbonates between 25 and 50˚C, and are consistent with a single trend that also intersects data for synthetic calcite equilibrated at 1200˚C. These observations suggest that a single temperature dependant relationship reasonably approximates the calibration for both phases. Data from a variety of slowly-cooled (i.e., over geological timescales) natural marbles and rapid (i.e., laboratory timescales) heating experiments provide insights into the kinetics of solid-state ^(13)C-^(18)O bond reordering in carbonates and its closure temperature. More generally, our new calibration and constraints on high-temperature kinetics have implications for the application of this technique to burial and metamorphic processes. These issues will be illustrated through estimates of the thermal history and oxygen isotopic compositions and abundances of pore fluids for several suites of late Neoproterozoic carbonates [e.g., 4]

    Organic Cation Transporter 3 and the Dopamine Transporter Differentially Regulate Catecholamine Uptake in the Basolateral Amygdala and Nucleus Accumbens

    Get PDF
    Regional alterations in kinetics of catecholamine uptake are due in part to variations in clearance mechanisms. The rate of clearance is a critical determinant of the strength of catecholamine signaling. Catecholamine transmission in the nucleus accumbens core (NAcc) and basolateral amygdala (BLA) is of particular interest due to involvement of these regions in cognition and motivation. Previous work has shown that catecholamine clearance in the NAcc is largely mediated by the dopamine transporter (DAT), but clearance in the BLA is less DAT‐dependent. A growing body of literature suggests that organic cation transporter 3 (OCT3) also contributes to catecholamine clearance in both regions. Consistent with different clearance mechanisms between regions, catecholamine clearance is more rapid in the NAcc than in the BLA, though mechanisms underlying this have not been resolved. We compared the expression of DAT and OCT3 and their contributions to catecholamine clearance in the NAcc and BLA. We found DAT protein levels were ~ 4‐fold higher in the NAcc than in the BLA, while OCT3 protein expression was similar between the two regions. Immunofluorescent labeling of the two transporters in brain sections confirmed these findings. Ex vivo voltammetry demonstrated that the magnitude of catecholamine release was greater, and the clearance rate was faster in the NAcc than in the BLA. Additionally, catecholamine clearance in the BLA was more sensitive to the OCT3 inhibitor corticosterone, while clearance in the NAcc was more cocaine sensitive. These distinctions in catecholamine clearance may underlie differential effects of catecholamines on behavioral outputs mediated by these regions

    Calibration of the dolomite clumped isotope thermometer from 25 to 350°C, and implications for a universal calibration for all (Ca, Mg, Fe)CO_3 carbonates

    Get PDF
    Carbonate clumped isotope thermometry is based on the temperature-dependent formation of ^(13)C^(18)O^(16)O_2^(2-) ion groups within the lattice of solid carbonate minerals. At low temperatures the bonds between rare, heavy ^(13)C and ^(18)O isotopes are thermodynamically favored, and thus at equilibrium they are present in higher than random abundances. Here we calibrate the use of this temperature proxy in a previously uncalibrated carbonate phase — dolomite [CaMg(CO_3)_2] — over a temperature range that extends to conditions typical of shallow crustal environments, by determining the Δ_(47) values of CO_2 extracted from synthetic or natural (proto)dolomites grown at known temperatures from 25 to 350°C and analyzed in two different laboratories using different procedures for sample analysis, purification and post-measurement data treatment. We found that the Δ_(47) – 1/T^2 dependence for (proto)dolomite is linear between 25 and 350°C, independent of their Mg/Ca compositions or cation order (or the laboratory in which they were analyzed), and offset from, but parallel to, the theoretical predictions of the Δ_(63) dependence to temperature of the abundance of the ^(13)C^(18)O^(16)O_2 isotopologue inside the dolomite and calcite mineral lattices as expected from ab-initio calculations (Schauble et al., 2006). This suggests that neither the equilibrium constant for ^(13)C–^(18)O clumping in (proto)dolomite lattice, nor the experimental fractionation associated with acid digestion to produce CO_2, depend on their formation mechanism, degree of cation order and/or stoichiometry (ie., Mg/Ca ratio) and/or δ^(18)O and δ^(13)C compositions (at least over the range we explored). Thus, we suggest the following single Δ_(47) – 1/T^2 linear regression for describing all dolomite minerals: with T in kelvin and Δ_(47) in the Carbon Dioxide Equilibrium Scale (CDES) of Dennis et al. (2011) and referring to CO_2 extracted by phosphoric acid digestion at 90°C. The listed uncertainties on slope and intercept are 95% confidence intervals. The temperature sensitivity (slope) of this relation is lower than those based on low temperature acid digestion of carbonates, but comparable to most of those based on high temperature acid digestion (with however significantly better constraints on the slope and intercept values, notably due to the large range in temperature investigated and the large number of Δ_(47) measurements performed here, n = 67). We also use this dataset to empirically determine that the acid fractionation factor associated with phosphoric acid digestion of dolomite at 90°C (Δ∗_(dolomite90)) is about + 0.176‰. This is comparable to the Δ∗_(calcite90) experimentally obtained for calcite (Guo et al., 2009), suggesting that the acid fractionation Δ∗ for acid digestion of dolomite and calcite are the same within error of measurement, with apparently no influence of the cation identity. This hypothesis is also supported by the fact that our dolomite calibration data are indistinguishable from published calibration data for calcite, aragonite and siderite generated in similar analytical conditions (ie., carbonate digested at T ⩾ 70°C and directly referenced into CDES), demonstrating excellent consistency among the four (Ca,Mg,Fe)CO_3 mineral phases analyzed in seven different laboratories (this represents a total of 103 mean Δ_(47) values resulting from more than 331 Δ_(47) measurements). These data are used to calculate a composite Δ_(47)–T universal relation for those carbonate minerals of geological interest, for temperatures between -1 and 300°C, that is found to be statistically indistinguishable from the one described by dolomite only: Thus, in order to standardize the temperature estimates out of different laboratories running high temperature digestion of (Ca,Mg,Fe)CO_3 carbonate minerals, we recommend the use of this single Δ_(47)-T calibration to convert Δ_(47CDES) data into accurate and precise temperature estimates. More widely, this study extends the use of the Δ_(47) thermometry to studies of diagenesis and low-grade metamorphism of carbonates with unprecedented precision on temperature estimates based on Δ_(47) measurements — environments where many other thermometers are generally empirical or semi-quantitative

    PD-1T TILs as a predictive biomarker for clinical benefit to PD-1 blockade in patients with advanced NSCLC

    Full text link
    PURPOSE Durable clinical benefit to PD-1 blockade in NSCLC is currently limited to a small fraction of patients, underlining the need for predictive biomarkers. We recently identified a tumor-reactive tumor-infiltrating T lymphocyte (TIL) pool, termed PD-1T TILs, with predictive potential in NSCLC. Here, we examined PD-1T TILs as biomarker in NSCLC. EXPERIMENTAL DESIGN PD-1T TILs were digitally quantified in120 baseline samples from advanced NSCLC patients treated with PD-1 blockade. Primary outcome was Disease Control (DC) at 6 months. Secondary outcomes were DC at 12 months and survival. Exploratory analyses addressed the impact of lesion-specific responses, tissue sample properties and combination with other biomarkers on the predictive value of PD-1T TILs. RESULTS PD-1T TILs as a biomarker reached 77% sensitivity and 67% specificity at 6 months, and 93% and 65% at 12 months, respectively. Particularly, a patient group without clinical benefit was reliably identified, indicated by a high negative predictive value (NPV) (88% at 6 months, 98% at 12 months). High PD-1T TILs related to significantly longer progression-free (HR 0.39, 95% CI: 0.24-0.63, p<0.0001) and overall survival (HR 0.46, 95% CI: 0.28-0.76, p<0.01). Predictive performance was increased when lesion-specific responses and samples obtained immediately before treatment were assessed. Notably, the predictive performance of PD-1TTILs was superior to PD-L1 and TLS in the same cohort. CONCLUSIONS This study established PD-1T TILs as predictive biomarker for clinical benefit to PD-1 blockade in advanced NSCLC patients. Most importantly, the high NPV demonstrates an accurate identification of a patient group without benefit

    Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO_2 Fixation

    Get PDF
    Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand
    corecore