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Abstract 

 

Carbonate clumped isotope thermometry is based on the temperature-dependent formation of 
13C18O16O2

2- ion groups within the lattice of solid carbonate minerals. At low temperatures the 

bonds between rare, heavy 13C and 18O isotopes are thermodynamically favored, and thus at 

equilibrium they are present in higher than random abundances. Here we calibrate the use of this 

temperature proxy in a previously uncalibrated carbonate phase — dolomite [CaMg(CO3)2] — 

over a temperature range that extends to conditions typical of shallow crustal environments, by 

determining the ∆47 values of CO2 extracted from synthetic or natural (proto)dolomites grown at 

known temperatures from 25 to 350ºC and analyzed in two different laboratories using different 

procedures for sample analysis, purification and post-measurement data treatment. We found that 

the Δ47 – 1/T2 dependence for (proto)dolomite is linear between 25 and 350°C, independent of 

their Mg/Ca compositions or cation order (or the laboratory in which they were analyzed), and 

offset from, but parallel to, the theoretical predictions of the ∆63 dependence to temperature of the 

abundance of the 13C18O16O2 isotopologue inside the dolomite and calcite mineral lattices as 

expected from ab-initio calculations (Schauble et al., 2006). This suggests that neither the 

equilibrium constant for 13C–18O clumping in (proto)dolomite lattice, nor the experimental 

fractionation associated with acid digestion to produce CO2, depend on their formation 

mechanism, degree of cation order and/or stoichiometry (ie., Mg/Ca ratio) and/or δ18O and δ13C 

compositions (at least over the range we explored).  Thus, we suggest the following single ∆47 – 

1/T2 linear regression for describing all dolomite minerals:  

 

∆47CDES90 =  0.0428 (± 0.0033) * 106/T2 + 0.1174 (± 0.0248)  (r2
 = 0.997),  

 

with T in kelvin and ∆47 in the Carbon Dioxide Equilibrium Scale (CDES) of Dennis et al. (2011) 

and referring to CO2 extracted by phosphoric acid digestion at 90°C. The listed uncertainties on 

slope and intercept are 95% confidence intervals. The temperature sensitivity (slope) of this 

relation is lower than those based on low temperature acid digestion of carbonates, but 

comparable to most of those based on high temperature acid digestion (with however 

significantly better constraints on the slope and intercept values, notably due to the large range in 

temperature investigated and the large number of ∆47 measurements performed here, n = 67). We 

also use this dataset to empirically determine that the acid fractionation factor associated with 

phosphoric acid digestion of dolomite at 90°C (∆*dolomite90) is about + 0.176‰. This is comparable 
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to the ∆*calcite90 experimentally obtained for calcite (Guo et al., 2009), suggesting that the acid 

fractionation ∆* for acid digestion of dolomite and calcite are the same within error of 

measurement, with apparently no influence of the cation identity. This hypothesis is also 

supported by the fact that our dolomite calibration data are indistinguishable from published 

calibration data for calcite, aragonite and siderite generated in similar analytical conditions (ie., 

carbonate digested at T ≥ 70°C and directly referenced into CDES), demonstrating excellent 

consistency among the four (Ca,Mg,Fe)CO3 mineral phases analyzed in seven different 

laboratories (this represents a total of 103 mean Δ47 values resulting from more than 331 Δ47 

measurements). These data are used to calculate a composite Δ47–T universal relation for those 

carbonate minerals of geological interest, for temperatures between -1 and 300°C, that is found to 

be statistically indistinguishable from the one described by dolomite only:  

 

∆47CDES90 =  0.0422 (± 0.0019) * 106/T2 + 0.1262 (± 0.0207)  (r
2
 = 0.985) 

 

Thus, in order to standardize the temperature estimates out of different laboratories running high 

temperature digestion of (Ca,Mg,Fe)CO3 carbonate minerals, we recommend the use of this single 

∆47-T calibration to convert ∆47CDES data into accurate and precise temperature estimates. More 

widely, this study extends the use of the ∆47 thermometry to studies of diagenesis and low-grade 

metamorphism of carbonates with unprecedented precision on temperature estimates based on Δ47 

measurements — environments where many other thermometers are generally empirical or semi-

quantitative. 

 

 

1- INTRODUCTION  

 

Temperature is a significant parameter for many processes operating in various Earth systems and 

reservoirs (e.g., atmosphere, oceans, crusts, deep Earth). Geoscientists attempt to reconstruct past 

temperature variations in Earth’s surface, the shallow-crust, magmatic and metamorphic systems. One 

of the most widely used quantitative thermometric methods is based on the thermodynamically-based 

exchange of oxygen isotopes between two phases (fluid or solid), the so-called δ18O thermometry 

(Urey, 1947, Epstein et al., 1953). However, such thermometers generally constrain temperature only 

when two or more cogenetic phases mutually equilibrated and each can be measured or estimated for 
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δ18O, reducing its usefulness where thermodynamic equilibrium cannot be proven or when one or more 

of the phases of interest are not preserved. Many alternative paleothermometers have been used or 

combined to circumvent some of the problems inherent to oxygen isotope thermometry, particularly as 

applied to surface and shallow crustal environments, including: the molecular structure of organic 

biomarkers (Muller et al., 1996), the partitioning of elements between seawater and biogenic carbonates 

(e.g., Delaney et al. 1995), indices of structural and chemical maturation of organic matter (e.g., 

Lafargue et al., 1998), vitrinite reflectance or apatite fission track thermochronology (e.g., Arne and 

Zentilli 1994), the T-max parameter from kerogen pyrolysis (Espitalié et al., 1985), fluid inclusion 

microthermometry (e.g., Barker and Goldstein 1990), the illite crystallinity index (e.g., Kübler and 

Jaboyoff 2000). However most of these temperature proxies are often restricted to a small range of 

materials and conditions, and/or rely on empirical calibrations that are unsuitable for extrapolation to 

conditions beyond their calibrations, and/or represent an integration of temperature-time histories and 

therefore require independent estimation of duration of heating.  

Carbonate clumped isotope thermometry (or ‘∆47 thermometry’) (Ghosh et al., 2006; Schauble et 

al., 2006, Eiler et al., 2007, 2011) contributes new constraints to such problems because it is based on 

the temperature dependent formation of 13C18O16O2

2- ion groups within solid carbonate minerals: at lower 

temperatures 13C–18O bonds are thermodynamically favored and thus enriched relative to a random 

distribution, whereas at higher temperatures (T > 1000°C) the abundance of 13C–18O bonds more nearly 

approaches the random, or stochastic abundance of 13C–18O bonds in the crystal lattice. Interest in this 

method partly results from the fact that it is based on an intramineralic equilibrium (X12C18O16O2 + 

X13C16O3 � X13C18O16O2  + X12C16O3 ; where X is a metal ion), and thus can rigorously constrain 

temperature using measured isotopic species of a single phase (the carbonate) – avoiding the need to 

assume an isotopic composition of water (as one often must do when applying conventional oxygen 

isotope paleothermometers). Carbonate clumped isotope thermometry has thus been particularly useful 

for reconstructing temperatures in times and locations where the isotopic composition of water is 

unknown, as for reconstructing paleoenvironmental or diagenetical histories (Came et al., 2007, 

Bristow et al., 2011, Ferry et al., 2011, Finnegan et al., 2011, Dale et al., 2014, Loyd et al., 2015). 

Moreover ∆47 measurements are always accompanied by simultaneous δ
18O measurements of the 

analyzed carbonate, allowing the δ18O of the water from which carbonate grew to be calculated – in 

some applications, a more important parameter than the carbonate growth temperature (e.g., 

paleoaltimetry, Ghosh et al., 2006).  

Existing methods for precise carbonate clumped isotope analysis require CO2 as an analyte; results 

are typically reported as values of ∆47 in ‰ variations reflecting the overabundance of 13C18O16O relative 

to the stochastic distribution (Eiler 2007). Until now, the carbonate clumped isotope thermometer has 
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been experimentally calibrated for synthetic inorganic calcite (Ghosh et al., 2006; Dennis and Schrag, 

2010; Zaarur et al., 2013; Tang et al., 2014; Defliese et al., 2015; Kluge et al., 2015), siderite 

(Fernandez et al., 2014) and a variety of biogenic carbonates: aragonitic otholith (Ghosh et al., 2007), 

foraminifera (Tripati et al., 2010; Grauel et al., 2013), deep-sea corals (Thiagarajan et al., 2011), 

calcitic and aragonitic mollusks and brachiopods (Eagle et al., 2013; Henkes et al., 2013, Came et al., 

2014), bio-apatite (Eagle et al., 2010) or empirically on a variety of biogenic calcites (Wacker et al., 

2014) (Figure 1). All materials used in these studies had growth temperatures below 70°C, except for 

the recent studies of Kele et al., (2015) and Kluge et al., (2015), which include samples having growth 

temperatures up to 95 and 250°C, repectively. Prior to 2013, most (though not all) calibration studies 

report correlations of ∆47 vs. T that are relatively uniform and similar to the initial study of Ghosh et al. 

(2006), despite examining a wide range of biogenic and abiogenic minerals. [A noteable exception are 

carbonates formed by rapid CO2 degassing, including most natural speleothems; Affek et al., 2008, 

Daëron et al. 2011].  

However, since 2013, the emergence of additional calibration studies on various materials resulted 

in increasing differences among published ∆47-T calibration lines, illustrated by the large dispersion of 

published ∆47 calibration data in Figure 1 (see also examples of compilations of the published slopes and 

intercepts on calculated ∆47-T linear regressions in Wacker et al., 2014 or Defliese et al., 2015), that 

appear to reduce both the precision and accuracy of the temperature estimates made on the basis of ∆47 

data (even if only similar digestion temperatures are considered). [Indeed, Figure 1 shows a typical 50 

ppm dispersion of ∆47 data for a given temperature, that can result, for instance, in uncertainties of about 

± 8°C for growth temperatures close to 25°C, and higher uncertainties for higher temperatures].  

Possible factors that could partly explain the dispersion of data in Fig. 1 are differences in: (1) 

methodological/analytical procedures for data acquisition, (2) post-measurement data processing, or (3) 

intrinsic properties of the analyzed carbonates.  

(1) Strikingly, when considering published calibration datasets, most of “steep-slope” ∆47-T 

calibration lines found (Ghosh et al., 2006, Tripati et al., 2011, Thiagarajan et al., 2011, Zaaruur et al., 

2013, Came et al., 2014) were obtained with analytical protocols involving CO2 extraction via 25˚C 

acid digestion in sealed vessels followed by CO2 purification via gas chromatography using capillary 

columns used for the early ∆47 measurements at Caltech (and still in use at Yale University). In contrast, 

most of “shallow-slope” ∆47-T calibration lines (Dennis and Schrag 2010, Henkes et al., 2013, Wacker 

et al., 2013, Eagle et al., 2013, Fernandez et al., 2014, Tang et al., 2015, Defliese et al. 2015, Kluge et 

al., 2015, Kele et al., 2015, Winkelstern et al., 2016) were obtained with analytical protocols involving 

CO2 extraction via T ≥ 70˚C acid digestion (now in use in most laboratories generating ∆47 data), 

continuous trapping of CO2 over its generation followed by CO2 purification by gas chromatography 
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using either filled columns flushed by an He flow or one tube filled with porapak where CO2 is 

cryogenically transferred through it. However, despite substantial effort by the carbonate clumped 

isotope community to understand such differences (notably through regular workshops), no consensus 

explanation has been found.  

(2) Dennis et al. (2011) presented an inter-laboratory “absolute” standardization scheme (or CDES 

for Carbon Dioxide Equilibrated Scale) that can correct all Δ47 values to a proposed absolute reference 

frame, free of fragmentation/recombination and non-linearity effects in the source of the mass 

spectrometer, but requiring concurrent analyses of samples and standards of CO2 gas equilibrated at 

known temperatures. However, it is likely that retrospectively projecting published data into this 

absolute reference frame using global "tertiary transfer functions" (TTF) could lead to artifacts in the 

data, particularly when there is insufficient information about standards that were co-analyzed with the 

calibration samples.  

In parallel, various values for the difference between acid fractionation factors at 25°C and X°C 

(∆*25-X) have been previously used to convert ∆47 data from high temperature digestion reactions into the 

25°C acid digestion reference frame (e.g., ∆*25-90 varying between 0.069 and 0.092‰ for digestions at 

90°C) and could also partly contribute to the dispersion of data along the y-axis of Figure 1. Also, the 

variety of ∆47–(1/T2) slopes and intercepts found might also partly result from different statistical 

treatments of data that were not uniform in previous studies: with for instance some data points in 

Figure 1 representing averages out of 2 to 27 replicate ∆47 measurements. However, even when 

homogenizing data treatment (weighted by both the number of replicate and the uncertainties on growth 

temperatures) and/or replacing acid fractionation to a single common value, the discrepancy between 

∆47–(1/T2) trends with digestion at 25°C versus higher temperatures remains (Defliese et al., 2015), as 

does the dispersion of data in Figure 1. 

(3) Given the diversity of carbonate minerals used for generating previous ∆47-T calibrations it is still 

unclear whether or not (some of) the dispersion observed in calibration data (Figure 1) might also partly 

result from variations in 13C–18O clumping associated with the intrinsic characteristics of the calibration 

samples themselves. In other words, the dispersion observed in Figure 1 might also partly reflect some 

true (i.e., not due to measurement and/or data treatment bias) characteristics of the carbonate clumped 

isotope systematics as for example: i/ isotopic disequilibrium of 13C–18O clumping (as observed by 

Affek et al., 2008; Daëron et al., 2011; Saenger et al., 2012); ii/ ∆47 vital effects for some biogenic 

minerals; iii/ variations in 13C–18O clumping distribution with the structure or chemical compositions of 

the carbonate either inside the mineral lattice (as suggested by Schauble et al., 2006, Hill et al., 2014) or 

into CO2 generated by H3PO4 acid digestion (as suggested by Guo et al., 2009)]. Such “material-specific 

explanations” for the dispersion of ∆47 data in Figure 1 find support from analogy with the conventional 
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oxygen isotope systematics. Indeed, oxygen isotope fractionations between both carbonate-water and 

carbonate-extracted CO2 vary with: i/ mineralogy of the carbonate (i.e., inorganic calcite, aragonite, 

dolomite and other types of carbonates all show their own oxygen isotope fractionation factors; e.g., 

Kim and O’Neil, 1997 for calcite, Kim et al., 2007 for aragonite and Rosenbaum and Sheppard 1986 

and Horita, 2014 for dolomite); ii/ variations of structure or chemical composition inside of a single 

type of carbonate (e.g., for dolomite: Hardie et al., 1997; Schmidt et al., 2005 also suggesting a 

dependence to the degree of cation ordering and/or stoichiometry – ie., Mg/Ca composition); or iii/ 

mechanisms of biomineralization for biogenic carbonates – for example deep-sea corals or  coccolliths 

(Adkins et al., 2003; Hermoso et al., 2013). Thus, the complexity of the oxygen isotope systematics in 

carbonates raises the possibility that 13C–18O ‘clumping’ could also depend on mineralogy, degree of 

cation order and chemical compositions. So far only a small proportion of the carbonate group variety 

has been experimentally or empirically calibrated (mainly calcium carbonate, but see recent calibration 

for siderite in Fernandez et al., (2014) or carbonate groups in phosphate ; e.g., Eagle et al., 2010). This 

underlines questions related to other minerals, structures, and chemical compositions including the 

applicability of the ∆47 thermometry for studying material presenting a mixed mineralogy.  

 

Thus, although ∆47 thermometry can theoretically provide temperature estimates with uncertainties 

of ± 1-2°C at T < 50°C (when the most precise ∆47 data achievable with currently used analytical 

methods for ∆47 measurements are considered), in practice, such precision has not yet been definitively 

attained. This stems from the large dispersion of the previously published ∆47 calibration datasets that 

may lead to temperature estimates varying by several 10’s of degrees, particularly at the extremes of the 

calibration temperature range (see Zaarur et al., 2013 for an example of error that arises  when data fall 

out of the calibration range); with even more uncertainty when converting ∆47 data into temperatures 

using a calibration generated in another laboratory. 

 

Here we report a ∆47 calibration for dolomite samples that were precipitated at known temperatures 

from 25 to 350°C – that is across almost the entire range of ambient temperatures in which dolomite 

and other carbonate minerals can be found – and that differ from one another in “ intrinsic 

characteristics” such as formation mechanisms, bulk stable isotopic (δ13C and δ
18O) or Mg/Ca 

compositions, and cation ordering. For the first time the same suite of samples with highly varying ∆47 

and bulk isotopic compositions (namely δ
13C and δ

18O) were analyzed in two different laboratories 

using different techniques for CO2 extraction, purification and post-measurement data processing  [i.e., 

reported directly and indirectly into the absolute reference frame at Institut de Physique du Globe de 

Paris and California Institute of Technology, respectively]. In parallel, those data are used to discuss 
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some of the key issues related to the use of carbonate-clumped isotope thermometry discussed above, 

including inter-comparison of laboratories using different procedures for sample analyses, purification 

and data treatment, ∆47 dependence on mineral structure or chemical composition, fractionation factor 

for phosphoric acid digestion of carbonate minerals (∆*), real uncertainties on temperature estimates 

based on replicate measurements of ∆47 of unknown samples, and differences with previously published 

∆47-T dependence. This study ultimately aims to provide more accurate, precise and standardized (when 

different laboratories running high temperature acid digestion are compared) temperature estimates than 

currently possible based on ∆47 measurements, particularly for temperatures above 50°C. More broadly, 

this study aims to strengthen and expand the use of ∆47 thermometry for high temperature applications 

in which this tool has been only sparsely applied likely due to a lack of precision on temperature 

estimates relying only on theoretical predictions (since previous calibration studies have focused on a 

relatively narrow range of low-temperatures). This objective has importance in several fields of 

research because, when applied to materials subjected to burial and anchimetamorphic environments 

(generally < 250°C) only a few geothermometers can actually provide accurate temperatures for 

carbonate minerals.  

 

 

2- SAMPLES 

 

Table 1 reports four parameters characterizing the samples investigated in this study: (i) the 

duration of the experiment; (ii) the position of the 104 reflection; (iii) the relative content of Mg cations 

(dolomite stoichiometry) as determined by position of the 104 reflection (following Lumdsen and 

Chimahusky, 1980); and (iv) the degree of Mg-Ca cation ordering as determined by the relative heights 

of the 015 and 006 reflections (Redfern et al. 1989; Dove and Powell 1989; Hammouda et al. 2011, 

Zucchini et al., 2012). Cation ordering reflects the degree of alternating layers of Mg2+ and Ca2+ 

interspersed with CO3

2- groups in the lattice structure. Dolomites with varying degrees of cation 

ordering thus have varying crystal structures. Samples investigated here are showing a large range of 

degree of cation ordering and stoichiometry. Some of the experimental low-temperature samples are 

poorly ordered  (that is cation-ordering reflections are attenuated because cations occupy increasingly 

random positions within lattice) and/or not stoichiometric and are referred as protodolomite. 

Historically, Graf and Golsdsmith (1956) first used the term protodolomite to describe the poorly 

ordered transitional stage through which dolomites went during hydrothermal synthesis in the 

laboratory. Since then, protodolomite is usually defined as rhombohedral carbonate with slight Ca-

excess and dolomite basal reflections, but lacking major superstructure-reflections of cation-ordering, 
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which progressively increase as cations order within the mineral lattice with time.  

 

2.1. Laboratory products  

 

2.1.1. Laboratory high temperature dolomites 

 

These laboratory syntheses of (proto)dolomites were originally conducted for studying the oxygen 

isotope fractionation between dolomite and water at high temperature (Horita, 2014). The protocols 

used to generate these samples [e.g., duration, heating and cooling procedures as well as initial CaCO3 

materials (with different structures, chemical and bulk isotopic compositions; Table S1) and solutions 

(with various ionic strengths and Mg/Ca ratios; Table S1)] as well as some characteristics of the 

produced samples (e.g., stoichiometry, degree of cation ordering) are detailed in Horita (2014) and 

briefly described below and in Table 1.  

 

Protodolomite precipitation at 80°°°°C: Ca-Mg carbonate was synthesized by preparing separate 

solutions of MgSO4, Ca(NO3)2.4H2O, and Na2CO3 to reach an initial compositions of 0.256, 0.238, and 

0.483 molal, respectively. Milky solids precipitated immediately upon mixing and the mixed solution 

was placed in a sealed (air tight) glass bottle, which was then placed within a water bath controlled at 

80.2 ± 1ºC and remained immersed at this temperature over 41 days.  Atomic absorption and XRD 

analysis shows that the Ca-Mg carbonate precipitated has the chemical composition of almost perfectly 

stoichiometic dolomite (Ca0.51Mg0.49CO3), but lacks a (015) super-lattice peak indicating Mg-Ca ordering 

(Table 1, Figure S1 and Horita 2014); thus, this material has the properties of so-called protodolomite.  

 

Dolomitization of calcite or aragonite (100-350°°°°C):  Dolomite synthesized at temperatures from 100 

to 350ºC was grown by reacting powdered CaCO3 (either reagent calcite or natural aragonite; Table 1 

and S1) with Ca-Mg-(Na)-Cl solutions following: 2CaCO3 + Mg2+ � CaMg(CO3)2 + Ca2+. The reaction 

proceeds from the starting CaCO3 to very high-Mg (35-40 mol % MgCO3) calcite to Ca-rich disordered 

dolomite to well-ordered near-stoichiometric dolomite. About 100-150 mg of ground natural aragonite 

(Minglanilla, Spain) or reagent calcite were transferred to a Teflon cup along with 80 – 120 g of a Ca-

Mg-(Na)-Cl solution. The Teflon cup was then placed and sealed inside a 300 mL bolted-closure 316 

stainless steel reactor vessel, which was in turn placed inside a furnace in the vertical position at the 

target temperature.  The temperature of the reactor vessel, which reached the target temperature within 

1-2 hours, was controlled within ± 2 °C for durations of 6 to 85 days (Table 1). At the end of the 

experiments, the reactor was pulled out of the furnace, and cooled quickly by blowing with compressed 

air (the reactor typically reached less than 50°C in less than 30 minutes). The recovered powder 
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samples were washed several times with distilled water. Their mineralogy and Ca/Mg ratios were 

determined with XRD and atomic absorption spectroscopy (Table 1 and Horita, 2014).  The Ca-Mg 

carbonate samples synthesized at 102°C have a slight excess of Ca relative to stoichiometric dolomite 

(56-58 mol % CaCO3) and an attenuated (015) ordering reflection indicates some degree of dolomite 

ordering (Figure S1). Interestingly the sample 100-A3 (synthesized over 85 days) shows a higher 

degree of cation ordering than the sample 100-A2 (synthesized over 36 days), suggesting that time 

allows progressive ordering of cations. Other samples synthesized at higher temperatures are 

stoichiometric, or nearly so, and exhibit a (015) ordering peak as strong as that seen in ordered 

hydrothermal dolomite (Figure S1 and Horita, 2014).  

Some of these laboratory syntheses were conduced to test possible experimental artifacts such 

as: (i) isotopic inheritance, (ii) pre-mature reaction, and (iii) kinetic isotope effects (Horita, 2014). (i) 

To test a possible isotopic inheritance effect during dolomitization, two different starting CaCO3 

polymorphs were used at 100°C (aragonite and calcite with very different δ
18O and δ

13C isotopic 

compositions of δ18OSMOW = 24‰ and δ13CPDB= -2.41‰ or δ18OSMOW = 7.87‰ and δ13CPDB= -36.4‰, for 

samples 100-A2 and 100-A3, respectively; Table S1). (ii) In parallel, dolomitization might have started 

before reaching the target temperatures. This effect of pre-mature reaction was examined at the highest 

experimental temperature (350°C), with an experiment where the vessel was heated up from room 

temperature (sample 350-A7). (iii) Finally, in the conversion of calcium carbonate to dolomite, kinetic 

(rather that equilibrium) isotope effects could have controlled the reaction. This hypothesis was tested 

by conducting experiments using solutions with different Mg/Ca ratios and ionic strengths at 150°C, 

250°C, 300°C and 350°C (since dolomitization is considered to proceed faster in solutions with high 

ionic strengths and higher Mg/Ca ratios; e.g., Kaczmarek and Sibley, 2011) as well as conducting the 

dolomitization reactions with two different CaCO3 polymorphs at 100°C (since aragonite is more 

promptly dolomitized than calcite).  

 

2.1.2. Bacterially-mediated precipitated samples 

 

 Some of the bacterially-mediated protodolomites analyzed here were originally synthesized in order 

to determine the oxygen isotope fractionation between dolomite and water at low temperature 

(Vasconcelos et al., 2005). The protocol used and sample characteristics are described in detail in 

(Vasconcelos et al., 2005), and only briefly summarized here and in Table 1. The precipitation 

experiments were performed under anaerobic conditions with a pure microbial strain isolated from 

Lagoa Vermelha, Rio de Janeiro, Brazil (Warthmann et al., 2000; Vasconcelos and McKenzie, 1997). 

These sulfate-reducing bacteria (Desulfovibrio strain LV form1) were grown in bottles in an anoxic 

liquid medium at three different temperatures (30, 40 and 45ºC) maintained in thermostat-controlled 
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incubators. The synthetic growth medium was a solution with an ion concentration similar to that of the 

natural Lagoa Vermelha water. Sterile control samples were prepared and maintained under the same 

conditions but showed no evidence of carbonate precipitation. As the lower temperatures are below the 

growth optimum for the bacteria (~37-38ºC), experiments were run for 4–6 months to obtain sufficient 

mineral precipitate. The Ca-Mg carbonates precipitated have Mg contents between 41 and 53% and 

dolomite d-spacing, but lacks the (015) super-lattice peak (Figure S2, Table 1 and Vasconcelos et al., 

2016). At 30 and 40ºC, calcite and high-Mg calcite co-precipitate with protodolomite. These mixed 

carbonate samples were treated with a 0.1M EDTA solution for ~15 min to dissolve the calcite and high 

Mg calcite, leaving a pure protodolomite residue to be analyzed for its isotopic composition. The purity 

of the samples after pre-treatment was confirmed by XRD. The samples were treated with sodium 

hypochlorite or H2O2 to eliminate organic contaminants.  

 

 

2.2. Natural low temperature dolomites  

 

We analyzed two samples from hypersaline lagoons: CVLV and CVBE. Sample CVLV is a natural 

dolomite from Lagoa Vermelha (Vasconcelos and McKenzie, 1997). The youngest sediments in Lagoa 

Vermelha are a mixture of calcite, high-Mg calcite, and Ca-rich dolomite. During the annual change 

from wet to dry seasons, the salinity of the lagoon water undergoes large variations from brackish to 

seawater values, reaching hypersaline values at the height of the evaporative conditions. The 

temperature of the lagoon water averages 25°C annually and varies little over the year (± 4˚C). XRD 

analysis shows that dolomite from Lagoa Vermelha is ordered and nearly stoichiometric (Table 1, 

Figure S1).  

Sample CVBE is a natural dolomite from Brejo do Espinho lagoon that is a very shallow (< 0.5 m) 

hypersaline coastal lagoon located east of Lagoa Vermelha about 100 km east of Rio de Janeiro 

(Brazil). The lagoon water has a typical seawater Mg/Ca molar ratio of ~ 5, indicating a seawater origin 

modified by evaporation and dilution processes (Van Lith et al., 2002). The temperature of the lagoon 

water averages 25°C annually and varies little over the year (maximum ± 4˚C, Bahniuk et al., 2015). 

Brejo do Espinho sediments contain pure dolomite as well as high-Mg calcite and Ca-dolomite (45 to 

47% Mg) on the top sediment (Van Lith et al., 2002). Those mixed carbonate samples were treated with 

a 0.1M EDTA solution for ~15 min to dissolve the calcite and high-Mg calcite, leaving a pure dolomite 

(ordered and stoichiometric) residue to be analyzed for its stable isotope composition (Table 1, Figure 

S1).  

For both samples, organic contaminants were removed prior to analysis by oxidation with H2O2.  
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3. METHODS 

 

Here we describe the methods used over the course of this study at both Institut de Physique du 

Globe de Paris (France) and California Institute of Technology (USA) for ∆47 measurements and post-

measurements data treatment on similar samples. The procedures used at IPGP and Caltech differ from 

each other on several points, the most critical ones being the procedures for CO2 extraction and 

purification (e.g., digestion time, sample grain size, purification steps, quantification of extracted CO2) 

as well as the data reduction procedures used to transfer raw ∆47 into the absolute reference frame (i.e., 

mostly direct versus indirect data transfer into the absolute reference frame, with also “shallow and 

stable” versus “steep and fast moving” slopes for heated gases, respectively used at IPGP and Caltech).  

 

3.1. Carbonate digestion, CO2 purification and stable isotopes measurements  

 

3.1.1. Analytical procedure at IPGP 

 

Measurements performed at Institut de Physique du Globe de Paris were made from 2013 to 2015 with 

a manual acid digestion and gas purification system and then introduced into a dual-inlet Thermo 

ScientificTM MAT 253TM gas source isotope ratio mass spectrometer (in the Laboratoire de Géochimie 

des Isotopes Stables at IPGP), configured to simultaneously measure masses 44-49. Since this is the 

first time that the IPGP setup is described, we here detail the procedure. Carbonate samples are reacted 

for 20 min for calcite and 2h for (proto)dolomite in a common acid bath (CAB) held at 90°C. 

Classically, circa. 5 mg of carbonates (8 mg on the first measurements of this study) are loaded in silver 

capsules and left under high-vacuum for at least 3 hours before being dropped in the acid bath. Up to 16 

samples are successively reacted in the same batch of phosphoric acid (~ 104%; ρ=1.914). The gas 

produced by acid digestion of carbonate is directly collected in a liquid nitrogen (LN2) trap.  

After complete digestion, non-condensable gases are pumped away to less than 10-5-10-4 mbar and 

the CO2 (plus the trapped H2O + acid vapor produced during the digestion step) is then slowly unfrozen 

(3-4 min) to be eventually collected in a second LN2 trap after passing through a LN2-ethanol trap (-117 

± 6°C) to remove water and acid vapor. Purified CO2 was quantified and CO2 extraction/purification 

yields checked (i.e., recovered CO2 divided by expected CO2 for a given reacted carbonate sample) for 

all the samples and standards with a calibrated capacitive gauge. Over the course of this study 

extraction/purification yields were 100.2 ± 2.5% for calcite standards and 100.4 ± 4.6% for dolomite 

samples, except sample 350-A9 that shows a reproducible yield of ~ 75% due to the occurrence of 

magnetite. Purified CO2 is then allowed to pass (by differential pressure) through a 10 cm long U-trap 
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(6mm, ID) packed with silver wool to remove sulfur compounds and 7-8cm of Porapak-Q, 50-80 mesh 

to remove remaining traces of water or volatile organic compounds. This latter trap is enclosed in an 

aluminum block held at -28°C using two Peltier cells. The Porapak-Q trap is cleaned every night or 

after any samples showing traces of contamination by heating at 150°C. The purified CO2 is then 

collected into a sample tube and introduced into the MAT 253 within 10 min after purification. CO2 

samples are analyzed versus a reference CO2 working gas tank provided by Oztech Trading Corporation 

and with bulk isotopic compositions normalized with international reference material NBS19 (and daily 

with our carbonate standards – mainly Carrara IPGP and 102-GC-AZ01b – normalized to NBS19). The 

Oztech CO2 working gas tank used over the course of this study has carbon and oxygen isotopic 

compositions of δ13C = - 3.63‰ PDB and δ18O = -15.79‰ PDB. Each sample, standard, or reference 

gas is analyzed at 12V signal on the Faraday cup measuring mass 44 (16V for the few carbonates for 

which 8 mg of powder were reacted). Each measurement consisted of 7 acquisitions of 10 cycles of 

comparison between the CO2 extracted from sample versus Oztech working gas, with a signal 

integration time of 26 s (total integration time of 1820s).  

Accuracy on ∆47 data was reached by correcting data to CO2 gases driven to isotopologue 

equilibrium at 1000 and 25°C and checked with carbonate reference materials that were also analyzed 

in the inter-lab comparison study of Dennis et al. (2011): Cararra marble and 102-GCAZ-01. To 

construct the Carbon Dioxide Equilibrated Scale (CDES) we regularly analyze CO2 Heated Gases (HG, 

held at 1000°C for 3h) and Equilibrated Gases (EG at 25°C) which were alternatively analyzed every 3-

4 analyses of carbonate samples. The bulk isotopic composition of HG and EG spans a range of δ47 

values from -52 to +30‰, which almost entirely covers the variation range of unknown dolomitic 

samples (from -68 to +12‰) and calcite standards (from +3 to +18‰) analyzed in this study.  

 

3.1.2. Analytical procedure at Caltech  

 

Measurements performed at California Institute of Technology (USA) were made in 2008-2009 with 

an automated acid digestion and gas purification device coupled to a dual inlet Thermo MAT253 as 

described in (Passey et al., 2010). Briefly, samples weighed into silver capsules (~ 8 mg) were reacted 

in a common phosphoric acid bath (~ 103%; 1.90 < ρ < 1.92) for 20 minutes at 90°C under static 

vacuum (evacuated to < 0.5 Torr at the beginning of the reaction). Up to 15 samples are successively 

reacted in the same batch of phosphoric acid. The evolved CO2 was passed through an ethanol/dry ice 

U-trap (~ - 80 °C) before being collected on a liquid nitrogen temperature (-196 °C) U-trap.  Following 

the 20 minute reaction period, the CO2 was carried through a Porapak Q 120/80 mesh gas 

chromatography column held at -20° C using He as the carrier gas.  Unlike the setup at IPGP, yields of 

gaseous CO2 were not precisely quantified, but were qualitatively monitored relative to yields observed 
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for pure calcite samples using the pressure gauge in the bellows volume of the dual-inlet system. The 

purified CO2 was analyzed using a Thermo ScientificTM MAT 253TM Mass Spectrometer configured to 

collect masses 44–49. Each measurement consisted of eight acquisitions (16V on m/z = 44) of 7 cycles 

of unknown sample CO2 versus Oztech working CO2 gases (with δ18O = 24.97‰ VSMOW and δ13C = -

3.60‰ PDB and verified through measurements of the NBS-19 standard, analyzed using the same 

methods used for samples analyses). Signal integration time is 26 s, resulting in total integration time of 

1456s each for the sample and the working CO2 gas. Because at the time the measurements were made 

at Caltech the complexity and potential evolution through time of the dissociation-recombination 

reactions of CO2 in the ion source were not fully recognized, only HG standards (δ47 values from ~ -40 

to +10‰) were run concurrently to unknown samples to correct from mass spectrometer effects such as 

non-linearity and scale compression. Note however that accuracy of such corrections was checked with 

carbonate standards that were concurrently run to samples (notably Cararra marble and in-house 

standards, for which accepted values in the CDES are now available).  

 

3.2. Post-measurement data processing  

 

In both laboratories, traditional δ18O and δ13C data were acquired as part of each ∆47 analysis and 17O 

correction were made following Santrock et al. (1985). In order to account for the temperature 

dependent oxygen isotope fractionation between CO2 gas and dolomites resulting from the reaction with 

phosphoric acid at 90ºC, a fractionation factor of 1.0093 was used, following Rosenbaum and Sheppard 

(1986). Both the δ18O and δ13C of the carbonate samples are referenced to the V-PDB scale as 

determined using the pre-calibrated Oztech CO2 tank as the reference working gas. 

Post-analysis ∆47 data reduction was done according to two reference frames previously outlined: 

the “stochastic distribution reference frame” (also called “heated gas line – HGL” reference frame or 

“intra-laboratory reference frame” or “Ghosh scale”; defined in detail in Huntington et al., 2009) and 

the “absolute reference frame” or “inter-laboratory reference frame” defined by Dennis et al., (2011) 

and also called “CDES” for Carbon Dioxide Equilibrated Scale. In the former case, as recommended by 

Huntington et al. (2009), our raw ∆47 data were corrected for non-linearity effects based on results for 

CO2 gases heated at 1000°C only, and for scale compression effects based on the nominal value of -

0.8453‰ (i.e., the intercept of the heated gas line at the time the data from Ghosh et al., (2006) were 

acquired). [Note however that this procedure relies on the implicit assumption that different batches of 

Oztech working gas have identical Δ47 compositions that do not vary with time]. Alternatively, for 

transferring our raw ∆47 data into the absolute reference frame, non-linearity effects were corrected 
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using CO2 gases driven to isotopologue equilibrium at both 1000 and 25°C at IPGP (and only 1000°C at 

Caltech). Scale compression effects were corrected either: (1) with empirical transfer functions (ETF) 

based on theoretical predictions of the abundances of multiply-substituted isotopologues in gaseous 

CO2 at thermodynamic equilibrium at IPGP (as recommended when analyses of gas equilibrated at 

various temperatures were performed concurrently to unknown samples), or (2) with and a tertiary 

transfer function (TTF) at Caltech (as recommended when only heated gases and carbonate standards 

that have now accepted values in CDES were analyzed concurrently with unknown samples).  

Finally, ∆47 data are then corrected for acid reaction temperature in order to normalize values to acid 

digestion performed at 25°C using ∆*25-90 (the difference between raw ∆47 obtained at 25 and 90°C acid 

digestion reactions) = 0.081% using the ‘Ghosh scale’ (experimentally determined by Passey et al., 

2010) and = 0.092‰ using the CDES (experimentally determined by Henkes et al., 2013 for calcitic 

minerals and confirmed at IPGP, Calmels et al., 2014). For each laboratory dataset, we report three 

different values of ∆47 depending on the scheme of data reduction used (Table S2 and S3): ∆47Ghosh values 

are reported in the 25°C acid digestion stochastic reference frame; ∆47CDES25 and ∆47CDES90 are both reported 

into the CDES absolute reference frame, for acid digestion temperatures of 25°C and 90°C, respectively 

(i.e., the ∆47CDES90 value was not corrected for acid reaction temperature). However, for dolomite samples, 

we only provide ∆47CDES90 values because the fractionation factor between 25 and 90°C acid digestion 

reactions (∆*90-25) is still debated, with ∆*90-25 values varying from 0.082 to 0.153‰ as determined on the 

same reference dolomite NIST 88b (Defliese et al., 2015 and Murray et al., 2016, respectively). 

Interestingly, it is notable that for NIST 88b the ∆47values obtained in both studies are similar when acid 

digestion was made at 90°C but differ by 0.07‰ (that is beyond the analytical uncertainty) when acid 

digestion was made at 25°C. [This feature might stem from the fact that H3PO4 digestion of most 

dolomite samples at 25°C are hard to perform and take several days]. We thus think that reporting our 

dolomite data into the 25°C reference frame is still uncertain, particularly until this discrepancy will be 

solved. 

  

3.2.1 Reduction of raw ∆∆∆∆47 data acquired at IPGP  

 

All samples were measured over the course of seven sessions of analyses distributed over a two-

year period. Table S2 compiles all isotopic data for samples, carbonate reference materials and 

equilibrated gases as well as information on the slopes and intercepts of equilibrated gas lines, and 

empirical transfer functions (ETF). 

Importantly, in contrast with the conditions for ∆47 measurements made at Caltech, HGL and EG 

slopes are very shallow (i.e., only small linearity corrections are applied to the raw ∆47 data) and both 
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slopes and intercepts only slightly vary (e.g. from 0.0019 to 0.0042 and -0.8123 to -0.7886 over time, 

respectively for heated gases) over the course of the 2 years of analyses at IPGP (i.e., limiting 

uncertainties associated with a fast moving HGL when not enough or inappropriate standard material 

were run concurrently with the samples). The ∆47 values were corrected for linearity using a fixed slope 

fitted to both the heated and equilibrated gases. The ∆47 values were thereafter transferred into the CDES 

reference frame (∆47CDES25 and ∆47CDES90) using Empirical Transfer Functions (ETF) that were determined 

for a block of typically 30 raw analyses, with ETF slopes and intercepts only slightly varying from 

1.1093 to 1.1379 and from 0.9160 to 0.9331‰ respectively over the two year period.  

The accuracy in ∆47 values with the IPGP analytical setup has been tested on carbonate standards 

previously shared by four laboratories producing clumped isotope data (Caltech, Johns Hopkins, Yale 

and Harvard, see Dennis et al. 2011): Carrara marble and 102-GC-AZ01b. One of these two carbonate 

reference materials was analyzed every 5 analyses to check for analytical stability, reproducibility and 

accuracy of ∆47 measurements at IPGP. Over the course of this study, the average ∆47 data obtained for 

those carbonate standards are ∆47CDES25 = + 0.403 ± 0.014‰ (1S.D., n=24; corresponding to ∆47CDES90 = + 

0.311‰) for IPGP-Carrara and ∆47CDES25 = + 0.717 ± 0.013‰ (1S.D., n=20; corresponding to ∆47CDES90 = + 

0.625‰) for 102-GC-AZ01b. Note that the ∆47CDES25 values are indistinguishable from those obtained in 

previous studies (e.g., Dennis et al., 2011, Henkes et al., 2013) and that the standard deviations on the 

twenty-ish replicate ∆47 measurements made over the course of this study are consistent with those 

obtained at IPGP for these two carbonate reference materials over three years (typically of ± 14 ppm, 1 

S.D., n > 300). Over the course of this study, the average ∆47 data obtained for ETH1 standard (Carrara 

Marble heated at 600°C, 155 MPa, 10h and distributed by S. Bernasconi, ETH Zurich) are ∆47CDES25 = + 

0.289 ± 0.07‰ (1S.D., n=4; corresponding to ∆47CDES90 = + 0.197‰) and indistinguishable, when 

respective uncertainties are considered, from the “accepted value” reported in Meckler et al., (2014) 

[∆47CDES25 = + 0.267 and ∆47CDES90 = + 0.183‰].  

 

3.2.2. Reduction of raw ∆∆∆∆47 data acquired at Caltech  

 

Measurements performed at California Institute of Technology were made over the course of five 

different analytical sessions distributed over approximately 9 months (details of analyses are given in 

Table S3). We first transferred Δ47 data into the stochastic and 25°C acid digestion reference frames 

(∆47Ghosh). Briefly, raw Δ47 data were corrected for instrumental nonlinearity, scale compression, acid 

reaction temperature (by adding the ∆*25-90 = + 0.081‰). For three out of five sessions and the raw ∆47 
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values of heated CO2 gases drifted over time due to changes in the physical state of the mass 

spectrometer, a phenomenon previously observed by other authors (Huntington et al., 2009; Passey et 

al., 2010). In order to correct for this drift we used a MATLAB script that models changes in the slope 

and intercept of the heated gas line as low-order polynomial functions of time using a least squares 

approximation (Passey et al., 2010).  A fixed (time invariant) heated gas line was used for the two 

remaining sessions of data acquisition at Caltech. It is noteworthy that over the whole period of this 

study HGL slopes and intercepts varied considerably (from -0.0135 to 0.0201 and from -0.8453 to -

0.7618‰ respectively, with most of the variation observed during a two month period), reflecting fast 

changes in the mass spectrometric source conditions. In order to evaluate the potential effect of such 

rapid changes on the accuracy and reproducibility of the post-measurements reduction of the Δ47 values 

of the carbonate samples ran in various sessions of analyses, we tested several types of corrections 

(including moving or fixed heated gas lines and/or including heated gases with depleted δ47 values or 

not). Distinct extractions of Carrara marble standard analyzed together with unknown samples over the 

course of these four sessions of analyses yielded a mean ∆47Ghosh = 0.358 ± 0.008‰ (1SD, n=12), and 

NBS19 yielded a mean ∆47Ghosh = 0.350 ± 0.013‰  (1SD, n=11); that are both indistinguishable from the 

previously published values for those reference material (e.g., Dennis et al., 2011). 

The Δ47 data were also translated into the inter-laboratory absolute reference frame using the global 

tertiary transfer function (GTTF) given in Table 4 of Dennis et al. (2011) for reporting data obtained at 

Caltech before 2011 into the absolute reference frame. Using this transfer function, distinct extractions 

of Carrara marble yielded a mean ∆47CDES25 = 0.402 ± 0.018‰ (1SD, n=12 and corresponding to ∆47CDES90 = 

0.310‰) and NBS19 show a mean ∆47CDES25 = 0.402 ± 0.018‰ (1SD, n=11).   We also estimated, for 

each session of analysis, a laboratory tertiary transfer function (LTTF) based on measured Δ47 values of 

gases heated at 1000˚C and in-house carbonate standards that have now accepted ‘absolute’ Δ47 values 

(before acid correction) determined on multiple analyses made later on – that is when it was then 

possible to directly project their nominal Δ47 values into the absolute reference frame. With the LTTF, 

distinct measurements of Carrara marble yielded a mean ∆47CDES25 of 0.408 ± 0.020‰ (1SD, n=12), and 

NBS-19 yielded a mean ∆47CDES25 of 0.406 ± 0.020‰ (1SD, n=11). Importantly, when comparing Δ47 data 

calculated with these two methods to indirectly transfer Δ47 data into the absolute reference frame, we 

observe no difference in the calculated ∆47CDES data (at least at the analytically resolvable level), with the 

exception of one session for which insufficient numbers of standards were co-analyzed with unknown 
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samples to permit construction of a reliable LTTF. This hypothesis finds support in the fact that the 

standard deviation of replicate ∆47 measurements obtained on the carbonate standards for the different 

analytical sessions at Caltech seemed to be slightly better when the GTTF was used. We therefore 

report, in Table 2, data based on this correction scheme. [Note here that such observations are inherent 

to our own dataset and scheme of correction and do not apply to every dataset acquired at Caltech or 

another laboratory before 2011].  

  Finally, the potentially larger uncertainties in ∆47CDES values obtained for dolomite samples ran at 

Caltech before 2011 (resulting from: (i) indirectly reporting Δ47 data obtained at Caltech into the 

absolute reference frame; (ii) correcting raw Δ47 data from linearity and stretching conditions with steep 

and fast-moving heated gas lines; and (iii) the fact that we remarked that after 20 minutes at 90°C some 

other dolomite samples were not totally digested) motivated the additional analytical work at IPGP 

(described above) where linearity, scale-compression and extraction yields were more routinely and 

accurately monitored.  

 

 

4. RESULTS  

 

 Table 2 summarizes stable isotopic data for carbon (δ13C), oxygen (δ18O) and carbonate 

clumped isotopes (∆47) values for individual extractions of CO2 from powdered (proto)dolomite samples 

together with their known growth temperatures. Table 2 shows ∆47 values reported into the absolute 

CDES reference frame for acid digestion temperatures of 90°C (ie. the ∆47CDES90 value was not corrected 

for acid reaction temperature). The total range in ∆47CDES90 values among all the investigated samples 

varies from 0.604‰ to 0.215‰ (n = 67 measurements in total) for growth temperatures from 25 to 

351°C, respectively. The sub-set of bacterially-mediated protodolomite grown in the laboratory from 30 

to 45°C shows ∆47CDES90 varying from 0.574‰ to 0.541‰. The sub-set of natural dolomites CVLV and 

CVBE grown at 25°C has ∆47CDES90 of 0.591 and 0.604‰. The sub-set of hydrothermal (proto)dolomites 

grown in the laboratory from 100 to 350°C has ∆47CDES90 varying from 0.430 to 0.215‰. Notably, this 

study shows that ∆47CDES90 data on (proto)dolomite samples with formation temperatures ranging from 25 

to 350°C and acquired in two different laboratories using different procedures for data acquisition and 

processing are indistinguishable, at the analytically resolvable level, from each other (Figure 2a). Most 

importantly, despite the relatively large diversity of analyzed (proto)dolomites in their “intrinsic 

characteristics” (i.e., different conditions of precipitation – notably natural/laboratory or 

inorganically/bacterially-mediated precipitations – and other characteristics such as their Mg/Ca ratios 
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or degree of cation ordering, or their highly variable bulk isotopic compositions) they all define a single 

trend in ∆47 –(1/T2
) space (with a correlation coefficient R2 = 0.99 if all data are input to a single least 

squares linear regression). 

 

 

5. DISCUSSION  

 

5.1. Data Treatment  

 

Here we discuss our dataset in terms of accuracy (i.e., consistency between the two laboratories 

using different procedures for data acquisition and processing), sample homogeneity, isotopic 

equilibrium, and degree of ordering or stoichiometry; we conclude that, for a given growth temperature, 

we can average data independently of their way of formation and/or the laboratory in which they have 

been analyzed. Most importantly, we conclude that none of the “intrinsic characteristics” of the 

(proto)dolomite samples seems to influence 13C–18O clumping either in the mineral lattice or during CO2 

generation through H3PO4 reaction of acid digestion (at least at the 1 SD analytically resolvable level) 

and then that a single ∆47 – (1/T2
) relationship can fit through all analyzed (proto)dolomites.   

 

5.1.1. Comparison of data between IPGP and Caltech  

 

Our dataset allows comparison of various steps of the procedures used for data acquisition and 

processing in two different laboratories on a single suite of samples. While only one or two reference 

materials (often Carrara marble) are generally common to ∆47 measurements made in various 

laboratories, the comparison of data on our suite of samples covering almost the full ranges of ∆47 and 

δ
13C and δ18O found for natural carbonate samples provides a unique opportunity to identify whether 

potential analytical artifacts related to these procedures might explain some inconsistencies observed 

when comparing data from different laboratories [and, in turn, the diversity in published calibrations 

(Fig. 1)]. There are four main differences between the procedures used at IPGP and Caltech: (1) the 

length of the reaction between H3PO4 and the reacted carbonate powder (2 hours at IPGP on dolomite 

samples versus 20 minutes at Caltech with quantitative extraction only checked at IPGP), or the sample 

size reacted (from 5 to 8mg), or the acid concentration (~104% and ~103% at IPGP and Caltech, 

respectively) [both were made in common acid bath with approximately 10 mL of acid and a maximum 

of 16 samples dissolved in the same acid. The acid concentration after a series of digestion was not 

measured, but it is likely that it increased with increasing number of digestions (as qualitatively 
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monitored by the progressive decrease of the residual pressure above the acid bath)]; (2) the 

purification procedures for CO2 generated from acid digestion of the reactant carbonate (cryogenically 

transferred through a trap filled with Porapak at IPGP versus transferred with He flow through gas 

chromatographic (GC) columns filled with the same polymer at Caltech); (3) the linearity corrections 

made using slopes of both heated gas lines (HGL) and, at IPGP, equilibrated gas lines (EGL), which are 

shallow and vary little with time at IPGP versus steeper and fast-moving at Caltech; (4) the stretching 

corrections made by direct transfer of ∆47 data into CDES at IPGP (with empirical transfer functions 

based on equilibrated CO2 gases at both 1000 and 25°C run concurrently to unknown samples) versus 

indirect transfer at Caltech (with the tertiary transfer function given in Table 4 of Dennis et al., 2011).  

When comparing data acquired in the two laboratories, several features are observed. First, the mean 

∆47 values obtained for Carrara marble analyzed in both laboratories are indistinguishable from each 

other (∆47CDES25 = 0.402‰ at IPGP and Caltech) and from the previously published recommended values 

(e.g., Dennis et al., 2011, Henkes et al., 2013). Second, internal precision for raw ∆47 values ran at IPGP 

and Caltech are comparable (typical SE of 9 ppm and 11 ppm, respectively; Tables S2 and S3) and 

consistent with the shot noise limit of ∆47 measurements (for detailed explanations see Huntington et al., 

2009; Zaarur et al., 2013). Third, external reproducibility (SD) on several replicate ∆47 measurements of 

the same dolomite sample inside of the same laboratory tends to be substantially poorer at Caltech, 

compared to IPGP on comparable samples with similar number of replicates ran (with SD ranging from 

4 to 22 ppm at Caltech compared to 0 to 11 ppm at IPGP). In parallel, the good consistency observed 

between the ∆47CDES data out of the two laboratories suggests that transferring dolomite ∆47Ghosh data 

acquired at Caltech in the “old” reference frame into the CDES using GTTF defined in Table 4 of 

Dennis et al. (2011) did not generate significant (i.e., analytically resolvable) additional uncertainties in 

∆47CDES values. [This means that the composition of the CO2 tank used as a working gas at Caltech at the 

time dolomite data were acquired was similar to those used both at the time of Ghosh et al., 2006 and 

Dennis et al. 2011 data were obtained – note however that it might not be the case for all datasets 

acquired at Caltech over all times (i.e., with various aliquots of Oztech CO2 tanks)].  

We thus conclude that we can here average ∆47 values obtained for various replicate measurements 

independent of the laboratory in which they were measured, and that none of the differences in the 

analytical or post-measurements data processing procedures used at IPGP or Caltech can explain the 

scatter in calibration data shown in Figure 1.  

 

5.1.2.  Isotopic equilibrium reached for 
13

C–
18

O bond distribution and 
18

O/
16

O ratios into the 

mineral lattice 
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The ∆47 values obtained for (proto)dolomite samples investigated decrease with increasing 

growth temperature, reflecting thermodynamically-controlled 13C–18O clumping during carbonate 

precipitation. However, it has been previously suggested that rapid laboratory mineral precipitation may 

sometimes lead to kinetic fractionation of isotopes preventing isotopic equilibrium to be reached while 

relations between δ
18O and growth temperatures may still exist (as discussed for oxygen isotopes in 

Kim and O’Neil, 1997). Another potential difficulty specific to 13C–18O clumping may arise from solid-

state diffusion that can drive partial 13C–18O bond reordering to a “more clumped” state (i.e., leading to 

artificially higher ∆47 values than those expected at a given growth temperature) when high temperature 

carbonate samples were cooled down to room temperature. Indeed, solid-state diffusion has been 

suggested to drive isotopic exchange and 13C–18O bonds reordering upon cooling of high temperature 

carbonates as suggested for natural marbles or carbonatites (e.g., Dennis and Schrag 2010, Bonifacie et 

al., 2013, Stolper and Eiler, 2015), or experimentally heated carbonates (Passey and Henkes, 2012, 

Stolper and Eiler 2015). Based on three main arguments, we suggest that conditions prevailing during 

the crystallization of (proto)dolomites investigated here allowed reaching and retaining equilibrium for 

both 18O/16O isotope ratios and 13C–18O bonds abundance.  

 First, there are remarkable consistencies between δ
18O or ∆47 values for dolomites that grew 

from different batches of synthesis at a given growth temperature, with different conditions of durations 

(Table 1), differences in starting seed materials (e.g., sample 100A-2 and 100A-3 respectively 

crystallized after 36 and 85 days from aragonite and calcite seeds with very different bulk isotopic 

compositions; Table S1) or starting solutions (with different Mg/Ca ratios and ionic strengths) used for 

syntheses at 150°C, 250°C, 300°C and 350°C (Table S1). Indeed, despite those different experimental 

conditions at each investigated temperatures from 100 to 350°C, duplicate experiments all show very 

reproducible ∆47 results with standard deviation in the range of ± 0.015‰ to ± 0.022‰ (2σ) and 

standard error between ± 0.005‰ and ± 0.009‰ (Table 2) – a feature also observed on δ18O analyses 

(Horita, 2014). This suggests sample homogeneity regarding their δ18O and ∆47 compositions, as also 

suggested by the good external reproducibilities for their δ13C and δ18O values determined on various 

sizes of samples (i.e., 1 mg of carbonate reported in Vasconcelos et al., 2005 and Horita, 2014  

compared to 5-8 mg used for simultaneous determination of ∆47, δ
13C and δ18O at IPGP and Caltech) – 

but also that equilibrium conditions were reached for both oxygen isotopes and 13C–18O bonding over 

the various batches of syntheses (see also discussion in Horita, 2014 for δ18O values only).  

Second, there is no simple way to prove that the equilibrium 13C–18O bond distribution in carbonate 

is preserved during rapid quenching from a high temperature carbonate (particularly from those above, 

or close to, the closure temperature of carbonate minerals with respect to solid-state reordering of C–O 

bonds; that is about 200-300°C, Bonifacie et al., 2013). However this seems to be a reasonable 
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hypothesis given that the dolomites close to this blocking temperature (samples 200-A1, 250-A1 and 

A5, 300-A2 and A5, and 350-A7 and A9) show ∆47 values aligning well with the lower temperature 

samples (Fig. 2), which were held at temperatures too low to be affected by solid state 13C–18O 

reordering over short timescales (minutes to hours), according to kinetic results from previous studies 

(Bristow et al., 2011; Passey and Henkes, 2012; Bonifacie et al., 2013; Henkes et al., 2014, Stolper and 

Eiler, 2015). Alternatively, the possibility that dolomitization reactions might have proceed prior to 

reaching the experimental temperatures has been tested with the 350-A7 experiment, which started 

from room temperature. However, the ∆47  (and δ18O) results suggest that such premature reactions are 

very likely negligible since sample 350-A7 shows an average ∆47 value of 0.203‰ (n= 3 replicate 

measurements) that is, in fact, slightly lower than the average ∆47 of 0.233% obtained for the sample 

350-A9 (n= 2) synthesized in “normal experimental conditions” (which is opposite in direction to the 

expected effect of inheritance of material grown at lower temperature), but indistinguishable from each 

other when our 1 SD external reproducibility on carbonate standards is considered.  

Third, perhaps most importantly, while samples studied here were generated from various types of 

dolomite-forming processes (microbially-mediated precipitation versus hydrothermal dolomite formed 

by replacement of pre-existing calcite versus precipitation from a mixture of solutions) they all follow a 

single trend in the measured ∆47 of CO2 versus 1/T2 space that is parallel to the theoretical prediction for 

∆63 dependence to temperature of the abundance of the 13C18O16O2 in the dolomite mineral lattice as 

expected from ab-initio calculations (Schauble et al., 2006) (Figure 2). It is unlikely that these features 

would be (fortuitously) observed if equilibrium in distribution of 13C–18O bonds were not reached during 

laboratory and natural crystallizations of the (proto)dolomite samples studied here. 

 

5.1.3. No measurable effect of cation ordering or Mg/Ca ratio on 
13

C–
18

O clumping in the mineral 

lattice or its extracted CO2 

 

Samples investigated here show a range of characteristics found in naturally occurring 

(proto)dolomites with various degrees of cation ordering and stoichiometry (Table 1). Because the 

oxygen isotope fractionation factor for phosphoric acid digestion of carbonates can vary with its crystal 

structure (Hardie, 1987; Schmidt et al., 2005), we paid particular attention to determine if various 

Mg/Ca composition or degree of cation ordering would significantly affect 13C–18O clumping. However, 

the conformance of all data to a single linear trend with a correlation coefficient r2 > 0.99 argues against 

significant clumped isotope effects related to cation ordering and stoichiometry (Fig. 2). In particular, 

high temperature samples (highly ordered and stoichiometric dolomite, that are samples synthesized at 

T ≥ 150°C, would not align with lower temperature samples (and particularly protodolomite which are 
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poorly ordered and non-stoichiometric). Importantly, when only high temperature samples (i.e., fully 

ordered and stoichiometrical dolomites strictly) are considered in the regression calculation, the 

resulting regression line is indistinguishable from the one fitting through all samples. As importantly, 

while (proto)dolomite samples studied here show various degrees of cation ordering and stoichiometry, 

they all fit through one single ∆47–(1/T2
) regression line (r2 > 0.99) that is parallel to the theoretical 

prediction of the ∆63 dependence to temperature of the abundance of the 13C18O16O2 isotopologue in the 

dolomite mineral lattice (Schauble et al., 2006) in the 25 – 350°C range of temperature investigated 

(Fig. 2b).  

We thus conclude that the degree of 13C–18O clumping both in the carbonate lattice and in the CO2 

extracted by acid digestion of the reactant carbonate does not depend, at least at the analytically 

resolvable level, on the degrees of ordering and/or stoichiometry of the analyzed dolomite samples. 

Therefore, we conclude that a single ∆47–(1/T2
) calibration trend can be used to convert ∆47CDES90 data 

into temperature estimates of unknown (proto)dolomite samples across a range of “intrinsic 

characteristics” and ambient temperatures common in shallow crustal and surficial environments.   

 

 

5.2. ∆∆∆∆47 dependence with growth temperatures for dolomite  

 

5.2.1. Linear ∆∆∆∆47-1/T
2
 dependence for 25-350°C temperatures  

 

Here we calculate least square regression analysis fitting through the (proto)dolomite data according 

to Minster et al. (1979) modified from York (1969), which takes into account the independent and 

weighted errors on the growth temperature and the ∆47 data. The following dependence is found: 

 

∆47CDES90 =  0.0428 (± 0.0033) * 106/T2 + 0.1174 (± 0.0248)  (r
2
 = 0.998) [Eq. 1] 

 

with temperature (T) reported in Kelvin, ∆47CDES90 reported in per mil and into the 90°C acid digestion 

and CDES reference frames. We emphasize that Equation [1] was calculated for ∆47 data averaged by 

growth temperatures and weighed from the well-known (ie., determined with large number of replicate 

∆47 measurements n) standard deviation on carbonate reference materials corrected with the t-

distribution factor for the 95% confidence interval (Figure 3). This approach takes into account a 

“small” number of analyses n of unknown samples.  The uncertainties on the slope and intercept are 

given for the 95% confidence interval. Note that if average ∆47 dolomite data are weighted with their 

respective standard error of the mean (1 SE) (like for most of previously published ∆47-(1/T2
) 
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calibration equations), the calculated slope and intercept are comparable to those from Equation [1] 

(0.0428 and 0.1173, respectively), but reported errors are about five times less than those we report in 

Equation [1] (with errors as 1 SD being ± 0.0007 and ± 0.0050 on the slope and intercept, respectively). 

These low uncertainties are amongst (if not) the best reported so far for a ∆47-T calibration of the 

clumped isotope thermometer. This likely reflects both the small dispersion of the large number of 

replicate ∆47 measurements ran on (proto)dolomites crystallized at a given temperature, as well as the 

very large range of formation temperatures investigated (the largest range to date).  

Finally, it is noteworthy that we chose here to use linear fitting of the data in the investigated 25-

350°C temperature range (rather than polynomial sometimes used for describing large ranges of 

temperatures) because equations of linear regressions are easier to manipulate and because our 

statistical test of the use of a squared term to fit our dolomite data was found to be negligible (i.e., a 

Student t-test lead to rejection of the hypothesis that the Δ47 dependency to T-4, with a confidence degree 

much larger than 95%). Note however that our (proto)dolomite data are thereafter used together with 

previously published experimental data on calcites of higher temperature to provide a ∆47-T polynomial 

fit for growth temperature up to ~1600°C; section 4.3. 

 

5.2.2. Uncertainties on temperature estimates for unknown dolomite samples 

 

Figure 3b illustrates the 95% confidence interval of temperature estimates based on ∆47 data of 

unknown samples using dolomite calibration from Eq. [1]. The 95% confidence interval  uncertainties 

on temperature estimates resulting from Equation [1] are less than ± 3ºC below 50ºC, ± 5ºC at 100ºC, ± 

7°C at 150°C and ± 10ºC at 200ºC. Importantly, those uncertainties: (1) would be about two times 

smaller if only the 66% confidence interval level is chosen instead (which is the case in most geological 

studies), (2) apply only to data obtained using 90°C acid digestion reaction and/or for conditions of 

analyses for which ∆*X-90 is precisely known, and (3) are larger when uncertainties on ∆47 data are 

considered. As importantly, those uncertainties on determining growth temperatures based on ∆47 

measurements are only relevant for temperatures below the blocking temperature of the considered 

carbonate mineral (that are 200 and 300°C for calcite and dolomite respectively; Bonifacie et al., 2013) 

since, at higher temperatures, solid-state diffusion can change the 13C–18O bond distribution originally 

recorded in the mineral lattice during its crystallization.  

 

 

5.3. Kinetic fractionation of ∆∆∆∆* during acid digestion  
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5.3.1. Empirical determination of ∆∆∆∆*dolomite90 and comparison to ∆∆∆∆*calcite90  

 

The kinetic fractionation factor during acid digestion of dolomite at 90°C (∆*dolomite90) is here 

estimated by calculating the difference between our ∆47 measurements of CO2 extracted from dolomite 

grown at known temperature and the ∆63 abundance of 13C18O16O2 isotopologues in the dolomite lattice 

theoretically expected at a given temperature from ab-initio calculations (Schauble et al., 2006) (see 

Figure 4 for a graphical representation of those calculations). For doing so, we implicitly make the 

assumption that the ∆47-(1/T2
) relationship empirically obtained on dolomites only reflects a 

combination of both the initial 13C–18O clumping state in the mineral lattice and of the kinetic 

fractionation factor ∆*dolomite associated to CO2 generation at a given temperature for acid digestion (a 

reasonable hypothesis as discussed in part 5.1). For a given growth temperature, the calculated 

difference empirically obtained in between ∆63 from ab-initio calculations and ∆47 values on our 

investigated dolomites, averages to 0.176% with only a small uncertainty (i.e., 1SD of ± 0.006‰ and a 

total variation range of +0.166‰ to 0.189‰). Such small range in this calculated difference suggests 

that ∆*dolomite90 varies little (i.e., less than the analytically resolvable level of ± 0.014‰, that is the 1 SD 

long-term external reproducibility reached at IPGP on carbonate reference materials) with either: i/ the 

cation ordering and Mg/Ca ratios of the analyzed carbonates (as discussed in 5.1.3.); and ii/ the intrinsic 

∆47 and δ47 values of the considered carbonate (at least for the ranges investigated here: ∆47CDES90 values 

from 0.215 to 0.604‰ and δ47 values from -68 to +12‰). [These latter two features are qualitatively 

consistent with the theoretical model of Guo et al. (2009) that predicted only slight ∆47 changes of 

0.035‰ in reacted carbonates associated with a 1‰ increase in ∆63 and ∆47 changes of 0.002‰ per 50‰ 

increase in δ
13C of the reacted carbonate]. It is noteworthy that while our approach to determine 

∆*dolomite90 conceptually applies only to the 25-350°C temperature range we examined, the ∆*dolomite90 

estimated here is indistinguishable from the ∆* estimated using the same approach for calcite digested 

at 90°C (hereafter ∆*calcite90) of Passey and Henkes (2012) (Figure 4). Indeed, the six calcite samples with 
13C–18O bonds re-equilibrated at temperatures between 475°C and 800°C show an average difference of 

∆*calcite90 = + 0.198‰ (with 1ΣD of ± 0.009‰) between their ∆47CDES90 values (that are ∆47 values from 

Table 1 in Passey and Henkes 2012 from which we subtracted the + 0.081‰ value to “uncorrect” for 

the acid fractionation factor they added to account for a 25°C digestion reference frame) and the 

theoretical ∆63 abundance of 13C18O16O2 isotopologues into calcite lattice out of ab-initio calculations 

(Schauble et al., 2006). Here, we chose to compare our calculated ∆* for dolomite (∆*dolomite90) to that for 

calcite (∆*calcite90) calculated out of Passey and Henkes (2012) rather than to other studies reporting low-
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temperature synthesis of carbonates, because (similarly to in our study): acid digestion was made at 

90°C, ∆47 data were directly reported into the CDES, and perhaps most importantly, isotopic 

equilibrium was more likely to have been reached in their calcite samples heated at high temperatures. 

Such similarity in empirically calculated ∆*dolomite90 and ∆*calcite90 suggests that: (1) using the same ∆*dolomite90 

for dolomite for the whole range of growth temperature (not just the 25-350°C range investigated here) 

is likely a reasonable hypothesis; and (2) more broadly, ∆*90 for dolomite and calcite digested at 90°C 

are indistinguishable and thus that, as discussed in part 5.1.3, the kinetic isotope fractionation over acid 

digestion ∆* seems to be independent of the structure or Mg/Ca ratio of the analyzed carbonate (at least 

at the level of current analytical capacities in laboratories making ∆47 measurements) and close to the + 

0.176‰ value determined here.  

 

5.3.2. Comparison to the experimentally determined ∆*calcite25  

 

 Guo and co-workers (2009) have experimentally determined the kinetic fractionation factor associated 

to the 25°C acid digestion of calcite minerals (∆*calcite25) by measuring the ∆47 value of calcites that were 

formerly melted and recrystallized during quenching from high temperature (T > 1550°C) [with the 

assumption that the ∆47 value of the CO2 extracted from those disordered calcite minerals should then 

equal 0‰ (i.e., the ∆63 value for a carbonate showing a stochastic bond distribution) plus ∆*calcite25]. They 

measured ∆47Ghosh25 values averaging + 0.232% (reported in the “stochastic” reference frame) with a 

variation of ± 0.015‰ (1ΣD) on their three disordered calcites. In order to compare their average 

∆*calcite25 value to our estimate of the ∆*dolomite90, we transferred their ∆47Ghosh25 average into both CDES and 

90° acid digestion reference frames by: (1) using the relationship ∆47CDES = 1.0381 * ∆47Ghosh + 0.0266 

(that is the tertiary transfer function given in Table 4 of Dennis et al. (2011) for reporting old Caltech 

data into the absolute reference frame), giving a ∆47CDES25  = + 0.267‰ and (2) then subtracting the 

0.092‰ (i.e., the difference between 25°C and 90°C acid digestion measured for calcite in CDES; 

Henkes et al., 2013) to obtain a ∆47CDES90 = + 0.175‰. Despite the fact that both of these values likely 

have significant uncertainties that are difficult to evaluate (although independent), the ∆*90 values 

recalculated here for both calcite and dolomite are remarkably similar to each other (as well as to the 

value calculated from Passey and Henkes (2012)). This suggests that calcite and dolomite have the 

same absolute kinetic fractionation ∆* over acid digestion at both 25 and 90°C. This hypothesis also 

finds support in the fact that when we calculate a polynomial fit based on these three sets of 

experimental data on both calcite and dolomite in the 25-1600°C temperature range, the resulting 

relation [Equation 2] is remarkably consistent with the relation defined by adding the fractionation 
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factor ∆*90 = 0.176‰  (estimated here for both dolomite and calcite) to the theoretical ∆63 dependence to 

temperature for dolomite and calcite predicted from ab-initio calculations (Schauble et al., 2006) 

(Figure 4b). Equation 2 is defined as :  

 

∆47CDES90 = + 1.0771 * 10-3(106/T2)2  +  2.5885 * 10-2(106/T2) + 0.1745 [Eq. 2] 

 

with temperature (T) reported in Kelvin, ∆47CDES90 reported in per mil into both the 90°C acid digestion 

and CDES reference frames.  Note that we recommend using [Eq. 2] only if very high temperatures (T 

> 300°C) are relevant (e.g., for experimentally driven high temperature equilibration of 13C–18O bonds), 

the Equations [1 and 3] being more appropriate for the low temperature ranges.  

 

5.4 Comparison to previous calibrations  

 

Our dolomite samples digested at 90°C describe a linear regression with a shallower slope than 

carbonates digested at 25°C, as already noticed in many previous comparisons of high (ie. T ≥ 70°C) 

versus low digestion temperatures for other carbonate minerals (calcite, aragonite, siderite) [see the 

latest compilation in Defliese et al., 2015]. With the aim to reduce uncertainties when comparing 

datasets based on low versus high temperature of acid digestion, and because, despite large efforts from 

the clumped isotope community, it is still difficult to understand such discrepancy, we here compare 

our dolomite data only to those acquired with high-temperature phosphoric acid digestion reactions 

(i.e., 70°C < digestion temperature < 100°C). In parallel, in order to minimize bias due to the data 

treatment used in different studies we also chose to only compare ∆47 data that were directly projected 

into the CDES and to report those data into the 90°C acid digestion reference frame instead of the 25°C 

reference frame used so far – that is samples digested at temperatures other than 90°C have been 

converted into the 90°C acid digestion reference frame subtracting or adding the fractionation ∆*90-X 

value recommended by Defliese et al., (2015). In addition to being more practical (since most of 

laboratories that are currently generating ∆47 data are running 90°C acid digestion reactions) this 

approach has the advantage of eliminating uncertainties from transferring ∆47 data into the 25°C acid 

digestion reference frame when variable ∆*25-90 were previously used (e.g., from 0.069 to 0.092‰ for 

calcite).   

 

5.4.1. Consistency of most (Ca, Mg, Fe)CO3 carbonates digested at high-temperatures  
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When only carbonates digested at high temperatures (T ≥ 70°C) are considered, most of the 

suites of carbonate minerals of various origins (inorganic or biogenic calcites, aragonites, siderites from 

Henkes et al., 2013, Wacker et al., 2014, Fernandez et al., 2014, Tang et al., 2014, Defliese et al., 2015, 

Kele et al., 2015) are remarkably similar to our (proto)dolomite dataset – with the exception of the 

calcite data from Kluge et al., (2015) – and all fit inside the 95% confidence envelop defined by our 

dataset (Figure 5) although measurements were made in seven different laboratories (i.e., with different 

reaction times, nature of phosphoric acid used, number of replicate analyses made, long-term external 

reproducibilities on carbonate reference materials, etc.). [See also Figure S3 for another graphical 

representation of the Kluge et al.’s data offset relative to our data as well as other previously published 

data on high-temperature calcites and theoretical predictions]. In addition, all data are distributed 

around the polynomial trend calculated here for the 25-1600°C temperature range [Equation 2] and the 

one defined by adding the fractionation factor ∆*90 = + 0.176‰ (empirically determined here) to the 

theoretical predictions of the ∆63 dependence on temperature calculated by Schauble et al., (2006) 

(Figures 5 and S3). This observation about experimental data from seven laboratories supports the 

hypothesis made above that calcites and dolomites (and possibly aragonites and siderites) have similar 

kinetic fractionation ∆* over acid digestion, at least for high digestion temperatures (with apparently no 

influence of the cation identity or mineral structure). This feature is however not consistent with the 

data reported by Kluge et al. (2015) that show significantly higher (i.e., circa ≥ + 50 ppm) ∆47 values for 

a given growth temperature than other data reported in Figures 5 and S3. This offset could result from 

either intrinsic characteristics of the synthesized samples and/or different methods used for data 

acquisition or reduction. For instance the heated gas lines used to correct data in Kluge et al. (2015) 

were both moving fast and with a strong-slope. Such analytical conditions might in some cases lead to: 

(1) less accurate processing of raw ∆47 data (as shown by their 1SD long-term external reproducibility 

of ± 30 ppm obtained on carbonate reference materials, compared to the ± 14 ppm obtained at IPGP 

and Caltech) and (2) poorer knowledge on the slope and intercept reported for their ∆47-T relation that 

are 2 to 3 times larger than in [Eq. 1] when calculated similarly (Figure S4). However, even though the 

total variation range in ∆47 values reported for Carrara reference material in Kluge et al. (2015) is two 

times larger than that obtained over the course of this study (Fig. S5), the fact that average ∆47CDES90 

values found for Carrara marble in those two laboratories are indistinguishable when respective 

uncertainties are taken into account (i.e., ∆47CDES90 = 0.335 ± 0.030‰, 1SD, n=71; 0.310 ± 0.014‰, 1SD, 

n=24; 0.310 ± 0.018‰, 1SD, n=12; respectively found at Imperial College by Kluge et al., 2015 and at 

IPGP and Caltech in this study only – and confirmed by hundreds of measurements made since) does 

not argue in favor of a systematic analytical bias between those laboratories. On the other hand, it is 

notable that samples from Kluge et al. (2015) that show the largest offset from the other published data 
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are those synthesized using the “pressurized reaction vessel” method (Fig S3, and fitting systematically 

outside the 95% confidence envelops in Figure 5), which might reflect potential artifacts associated 

with the method of synthesis of these samples. Alternatively, the offset might also partly result from the 

choice of 17O correction parameters that could influence both data accuracy (as recently suggested by 

Daëron et al., 2016) and agreement between calibration datasets out of different laboratories. Thought it 

is not simple to predict how re-processing published data with 17O correction parameters different from 

those initially used for corrections in respective studies will influence the magnitude and direction of 

changes for ∆47 data, it is unclear why only the samples from Kluge et al. (2015) (or only those 

synthesized using the “pressurized reaction vessel”) would be affected by such artifacts and not the 

other calibration samples/data considered here (out of five different studies/laboratories). Finally, 

because it is difficult to clearly identify the reasons of the observed ~ 50 ppm offset with all the 

comparable data (i.e., acquired via digestion at high temperatures ≥ 70°C and direct transfer into 

CDES) published to date, the data from Kluge et al., (2015) are treated separately in the following 

calculations of the composite ∆47-T calibration.  

 

5.4.2. Master calibration for all (Ca, Mg, Fe)CO3 carbonates digested at high temperatures  

 

Previous attempts were made to provide “universal” ∆47-(1/T2
) relationships from a variety of 

combinations of published calibration datasets (Zaarur et al., 2013, Wacker et al., 2014, Rosenheim et 

al., 2013, Klugge et al., 2015, Defliese et al., 2015, Stolper and Eiler, 2015) with the aim of either 

understanding the reasons of the divergences in ∆47-T relations measured in different laboratories and/or 

increase the statistical number of data used for calculation of the ∆47-(1/T2
) relationship (to decrease the 

“artificial/biased” uncertainties on the slopes and intercepts of the calculated linear regression) and thus 

smooth out differences and standardize temperature estimates based on ∆47 data for the whole 

community. Examples of these attempts include gathering data with various methodological treatment 

and/or origins (i.e., intrinsic characteristics of analyzed carbonates) for which the consistency is 

contested and/or not proven yet, as for instance gathering data: (1) for different acid digestion 

temperatures (e.g., Kluge et al., 2015, Stolper and Eiler, 2015); (2) reported in various reference frames, 

with some transfer of old data made without knowing the long-term external reproducibility (or 

number) of equilibrated CO2 gases or carbonate standards ran together with unknown samples (Zaarur et 

al., 2013, Defliese et al., 2015, Stolper and Eiler, 2015); (3) corrected for acid digestion fractionation 

with ∆*25-90 varying from 0.069 to 0.100‰ (Wacker et al., 2014, Rosenheim et al., 2013, Kluge et al., 

2015) (with acid corrections sometimes made before the transfer into the absolute reference frame); (4) 

on experimentally grown abiogenic carbonates with natural biogenic carbonates for which, besides the 
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possible influence of minor vital effects or possible mixing of seasonal growth bands, the growth 

temperatures is often known with much less precision (Zaarur et al., 2013; Wacker et al., 2014; Defliese 

et al., 2015); and/or (5) on various mineral phases (Stolper and Eiler, 2015, Defliese et al., 2015). 

However, it is possible that gathering ∆47 data from so many origins and characteristics (ie.,  different 

procedures for data acquisition and post-measurement corrections, different intrinsic properties of the 

analyzed carbonates, or different statistical treatment of data – that is with some data points 

representing ∆47 averages out of 2 to 27 replicate measurements) might reduce the accuracy and 

precision of temperature estimates from ∆47 measurements.  

Here, with the aim of both improving the accuracy and reconciling temperature estimates (and their 

associated uncertainties) of different laboratories digesting carbonate samples at temperatures T ≥ 

70°C, we formulate a composite calibration for all (Ca, Mg, Fe)CO3 carbonate minerals by compiling 

data (directly transferred to CDES only) on dolomite, calcite, aragonite and siderite out of seven 

different laboratories (IPGP, Caltech, ETH and Universities of Tulane, Michigan, Johns Hopkins and 

Frankfurt). In order to statistically treat all ∆47 data in the same way (and thus eliminates a degree of 

uncertainty when comparing different datasets), all ∆47 data were averaged by growth temperature and 

weighted from the well-known standard deviation on carbonate standards in respective studies 

corrected with the t-distribution factor for the 95% confidence interval and the considered number of 

replicate ∆47 measurements of unknown samples. [This approach takes into account the small number of 

replicate ∆47 measurements in respective studies – which is between 4 and 11 in our study, but is mostly 

around 3 in other calibration studies]. This represents a total number of 103 mean ∆47 values resulting 

from more than 331 ∆47 measurements.  Figure 6 shows mean ∆47 data and the calculated equations of 

the least-square regression fitting through the data on inorganic carbonates only (Fig. 6a) or inorganic 

plus biogenic carbonates (Fig. 6b). Although considering the whole inorganic dataset for the calculation 

of the ∆47-(1/T2
) linear regression slightly changes the slope, intercept and the 2SD uncertainties (i.e., 

slope = 0.0438 ± 0.0024‰ and intercept = 0.1144 ± 0.0229%; Fig. 6a) compared to those determined 

for dolomite only in [Eq. 1], neither the absolute values nor the uncertainties of the temperature 

estimated from ∆47 data are significantly changed. This feature likely results from the fact that dolomite 

∆47 data have high statistical weight in the calculation of this regression line [i.e., statistical weight of ~ 

42%, with only 12 mean ∆47 values out of 48 considered in total. This reflects the low 95% confidence 

interval uncertainties associated to our data compared to some other considered here]. In contrast, when 

considering the whole dataset including biogenic samples (Fig. 6b), the statistical weight of the 

dolomite data is lowered to less than 29% (with only 12 out of a total population of 103 mean ∆47 values 

considered here), and the calculated linear regression is:  
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∆47CDES90 =  0.0422 (± 0.0019) * 106/T2 + 0.1262 (± 0.0207)  (r
2
 = 0.985) [Eq. 3] 

 

with temperature (T) reported in Kelvin, ∆47CDES90 in per mil with both 90°C acid digestion and CDES 

reference frames, and uncertainties on slope and intercept reported in 2SD. Finally, if average ∆47 CDES90 

data are weighted with their respective standard error of the mean (1SE) like for most of previously 

published ∆47-T calibration equations, the calculated slope and intercept are comparable (0.0424 and 

0.1257‰, respectively) to those from Equation [3] [however with uncertainties more than three times 

less (i.e., 1SD uncertainties of ± 0.0003 and ± 0.0035‰, respectively) and the statistical weight of the 

dolomite dataset lowered to less than 16%].  

Most importantly, the absolute values of the slope and intercept of Equation [3] considering ∆47 

data on inorganic and biogenic calcite, aragonite, dolomite and siderite from seven different 

laboratories are remarkably consistent with those defined based on the dataset acquired on dolomite 

only at IPGP and Caltech. In other words, for a given ∆47CDES90 value, temperature estimates resulting 

from Equations [3] and [1] only slightly differ from each other (i.e., a difference of less than 1°C for 

temperatures below 50°C and 2°C for temperatures up to 150-200°C). It is noteworthy that those 

differences are irrelevant when uncertainties on replicate ∆47 measurements are also considered (at least 

at the level of current analytical capabilities in laboratories making ∆47 measurements). Thus, we 

propose that this single composite ∆47-(1/T2
) calibration can be used to convert ∆47CDES90 data from 

different laboratories using comparable analytical conditions into accurate and standardized 

temperature estimates for all (Ca, Mg, Fe)CO3 carbonates of geological interest (e.g., calcite, dolomite, 

aragonite, siderite, magnesite).  

A discussion about possible ∆47 vital effects is beyond the scope of this study, but the fact that 

biogenic carbonates reported in Figure 6 are remarkably consistent with ∆47 data for inorganic 

carbonates acquired under comparable analytical conditions supports the lack of significant vital effects 

on ∆47 (at least at the analytically resolvable level) for some biogenic carbonates (e.g., Henkes et al., 

2013; Zaarur et al., 2013, Wacker et al., 2013; Tripati et al., 2010; Thiagarajan et al., 2010). Thus, in 

order to standardize temperature estimates and associated uncertainties out of ∆47 data from different 

laboratories using high temperature acid digestion, we also recommend the use of [Eq. 3] for biogenic 

carbonates for which the absence of vital effects have been demonstrated.  

 

 

6. SUMMARY AND BROADER IMPLICATIONS  
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We present carbonate clumped isotope analyses of natural and synthetic (proto)dolomites grown at 

known temperatures from 25 to 350ºC. This dataset allows formulation of a ∆47-(1/T2
) calibration that is 

linear in the 25-350°C temperature range, and allows determination of formation (or possibly 

reequilibration) temperatures of dolomites with the highest precision that is currently possible by 

multiple replicate ∆47 measurements of the same unknown carbonate sample. This represents the first 

experimental calibration dataset: (1) concurrently acquired in two different laboratories with different 

methods used for both data acquisition and post-measurement processing; (2) for dolomite minerals; 

and (3) for a wide range of temperature spanning more than 300°C (that is close to the total range of 

temperature observed in the Earth’s surface and shallow crust). Our dolomite data are used to discuss 

some key issues related to the use of the carbonate-clumped isotope thermometry, including ∆47 

dependence on mineral structure and elemental composition (notably Mg content), fractionation factor 

during phosphoric acid digestion of carbonate minerals (∆*), uncertainties in temperature estimates 

based on replicate ∆47 measurements of unknown samples, consistency of ∆47 data (and the resulting 

temperature estimates and uncertainties) acquired in different laboratories as well as the potential 

difference in ∆47-(1/T2
) calibrations for various types of carbonate with significant geological interest 

(e.g., calcite, aragonite, dolomite, siderite, magnesite). We conclude that:  

(1) None of the intrinsic characteristics of the (proto)dolomite samples investigated here (i.e., 

formation mechanism, degree of cation ordering, Mg/Ca ratios and/or δ18O and δ13C compositions) 

seem to influence 13C–18O clumping either within the mineral lattice or in the CO2 generated 

through H3PO4 acid digestion (at least at the analytically resolvable level) and then that a single ∆47-

(1/T2
) relationship can adequately represent all analyzed dolomite samples. The 1SD uncertainties 

in temperature estimates resulting from the dolomite calibration [Equation 1] are less than ± 1.5ºC 

below 50ºC, ± 2ºC at 100ºC, ± 3.5°C at 150°C and ± 5ºC at 200ºC, and only apply to temperatures 

under the blocking temperature of dolomite (i.e., at higher temperatures, solid-state diffusion can 

change the 13C–18O bond distribution originally acquired by the mineral lattice during 

crystallization).  

(2) Kinetic fractionation factor ∆*90 over acid digestion for calcite and dolomite are identical (at least 

at the level of current analytical capabilities in laboratories making ∆47 measurements), close to the 

+ 0.176‰ value determined here. This suggests that ∆*90 over acid digestion does not depend on 

the nominal ∆63 value, the cation identity or the mineral structure of the analyzed carbonate (which 

is also supported by the good agreement between our dolomite dataset and the previously 

published calibration datasets on calcite, aragonite and siderite). More widely, this confirms the 

previous suggestion that the difference in ∆47 observed between natural calcite and dolomitic 
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marbles (Bonifacie et al., 2013) actually reflects a real difference in their blocking temperatures 

(that are about 200 and 300°C, respectively).  

(3) For a given growth temperature, (proto)dolomite ∆47 data acquired in this study at both IPGP and 

Caltech are indistinguishable from most previously published ∆47 data for inorganic and biogenic 

calcites, aragonites and siderites analyzed under comparable analytical conditions (i.e., digestion 

temperature above 70°C with ∆47 data directly transferred into CDES) in seven different 

laboratories – with however data from Kluge et al., (2015) being statistically resolved from this 

group. This suggests that the kinetic fractionation factor during acid digestion is similar for calcite 

and dolomite (as suggested above) but also likely for aragonite and siderite (at least for high 

temperature digestion of carbonates). This also suggests that a single composite ∆47–(1/T2
) 

calibration can be used to convert ∆47CDES90 data measured in different laboratories using comparable 

analytical conditions into accurate and standardized temperature estimates for these four 

(Ca,Mg,Fe)CO3 minerals of geological interest. The 1SD uncertainties on temperature estimates 

resulting from the composite ∆47–(1/T2
) calibration are less than ± 0.7ºC at 25ºC, ± 1ºC below 

50°C, and comparable to those from Equation [1] for higher temperature. 

(4) This study allows the use of ∆47 for accurate and precise determination of carbonate growth 

temperature (or reequilibration temperature) for almost the whole range of temperature over which 

carbonate minerals form, and particularly for T > 50°C (that were poorly constrained by previous 

∆47 calibration studies). It thus provides better constraints on the carbonate formation temperature 

(and associated uncertainties) and, consequently, on the δ
18O of the water from which it grew 

(provided the sample did not experience solid-state diffusion). 

 

More widely, in addition to providing new insights to several specific challenges that are facing the 

clumped isotope community, this study strengthens and standardizes the use of ∆47 thermometry in high 

temperature problems for which only few geothermometers can provide accurate temperature estimates 

for material (and particularly carbonates) that have experienced temperatures lower than 200°C. Indeed, 

some of the most widely applied thermometric methods for such environments are actually 

measurements of integrated temperature–time history and therefore require independent estimation of 

duration of heating (or, more generally, a temperature time path) in order to provide a meaningful 

estimate of the maximum temperature attained by a rock. As importantly, ∆47 thermometry allows 

simultaneous determination of both the temperature and oxygen isotopic composition of the 

mineralizing fluid – a feature that helps to elucidate questions relative to the nature and origin of the 

mineralizing fluid, or the conditions of water-rock interactions – for temperatures up to 200°C for 

calcites and 300°C for dolomites (Bonifacie et al., 2013). ∆47 thermometry also holds promises in 
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contributing to some longstanding questions in Earth Science like for instance determining the debated 

origin of dolomite minerals in sedimentary successions (sometimes referred as the “dolomite 

problem”). Since this gap in our understanding of dolomite formation and diagenesis partly results from 

the difficulty in determining its formation temperature, we anticipate that these questions should benefit 

from our development of the dolomite clumped isotope thermometer. 
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Table 1: Summary of the characteristics of the (proto)dolomite samples investigated here.  

 

Table 2:  Summary table of isotopic data out of replicate analyses of the dolomite samples 

analyzed in this study both at IPGP and Caltech. Stable isotope compositions of carbon (δ13C) and 

oxygen (δ18O) are reported on the PDB scale. ∆47 data are reported relative to the absolute 

reference frame (Carbon Dioxide Reference Frame – CDES) defined in Dennis et al., (2011), for 

acid digestion temperatures of 90°C (ie. the ∆47CDES90 value was not corrected for acid reaction 

temperature). “Av. ∆47CDES90” are replicate ∆47CDES90 measurements averaged by growth temperature. 

“n” is the number of replicate ∆47 measurements of dolomite samples for a given growth 

temperature. Uncertainties on mean ∆47CDES90 values are given both as: “± 1 S.E.” = one standard 

error of the mean (1SD/√n ; ie., uncertainties considered in previous ∆47 calibration studies) and 

“± 95% C.I.∀ = uncertainties at the 95% confidence interval (ie. long-term external 

reproducibility on carbonate standards corrected with the student’s t-distribution factor at the 95% 

confidence level for each n considered – this approach takes into account the small sample size 

for unknown samples – ie., 4 < n < 11 here). More details on each single replicate ∆47 

measurement are reported in Table S2 and S3. 

 

Figure 1: Compilation of previously published calibration data on carbonate minerals into the 

absolute and 25°C acid digestion reference frames in the temperature range of 0-80°C. Each 

datapoint represents an average of several analyses of the same carbonate sample (from n = 2 to 

sometimes up to 27; e.g. Wacker et al., 2014), the only exception being the study of Zaarur et al. 

(2013) for which one data point represents one measurement of one synthesized sample. Data are 

reported as given in the publication or projected using tertiary transfer functions (TTF) given in 

Table 4 of Dennis et al. (2011). Only data that could be placed into the absolute reference frame 

were included. No uncertainties are reported for clarity of the figure.  Note that similar (if not 

larger) dispersion of data can be observed if data are reported in the stochastic reference frame 

(not shown). Data are also grouped “by type” of acid digestion temperatures (i.e., T = 25°C 

versus T ≥ 70°C). Note that we here prefer to show actual data points instead of the published 

calculated regression lines (like plotted in some previous papers) because those ∆47-T relations 

were calculated with various statistical treatments (e.g., ∆47 data averaged by sample or growth 

temperatures and/or weighted (or not) by the number of replicate measurements and/or by the 

uncertainty on growth temperatures) that bias rigorous comparison of those datasets. The dashed 

lines represent the ∆47 dependence with growth temperature for the CO2 extracted from calcite, 
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aragonite and dolomite minerals as theoretically calculated by Guo et al., (2009). Here, we stress 

that those calculations, in contrast to their use in some recent papers, are based on transition state 

theory that should not change whenever the absolute (CDES) or the stochastic reference frames 

are considered (since those reference frames are related to analytical bias on mass spectrometric 

measurements and should thus only affect ∆47 data, not theoretical calculations).  

 

Figure 2: ∆47 values for dolomite samples investigated here plotted against their assigned 

formation temperature. All data are reported in the absolute [CDES] reference frame and refer to 

CO2 extracted by phosphoric acid digestion at 90°C. Panel a: All single ∆47 value (n = 67) 

acquired both at IPGP and Caltech: open diamonds = dolomite data acquired at IPGP after 2012 

and directly reported into the CDES; open circles = dolomite data acquired at Caltech before 

2011 and indirectly transferred into the CDES. Uncertainties on each ∆47 measurement and 

temperature estimate are included in the symbol size. Note that the IPGP ∆47 data show less 

dispersion than the Caltech ∆47 data, probably due to more stable (and/or better monitored) 

conditions of analyses. Alternatively, some of the scatter in the Caltech data might also partly 

result from the fact that the reactant H3PO4 acid was more dilute than at IPGP [ie., due to either 

lower starting concentration and/or the fact that the analyzed samples were larger at Caltech (that 

implies more water produced over the reaction, and thus more dilution of the acid)].  Panel b:  ∆47 

data averaged by formation temperatures. Filled squares = synthetic dolomites; open triangles = 

natural samples. In both panels, the solid line represents the ∆63 dependence on temperature of the 

abundance of the 13C18O16O2 isotopologue inside the dolomite mineral lattice as expected from ab-

initio calculations (Schauble et al., 2006). Uncertainties on mean ∆47CDES90 values are reported for 

the 95% confidence interval. 

 

Figure 3:  Panel a - Dolomite ∆47 –T calibration reported relative to the CDES and referring to 

CO2 extracted by phosphoric acid digestion at 90°C. Plotted uncertainties on mean ∆47CDES90 values 

are the same as in Fig. 2b. The plain thick black line represents the least square regression line 

calculated according to Minster et al. (1979) modified from York (1969) [Equation 1], with 

uncertainties on slopes and intercepts given in 2σ  [note that if S.E. were considered instead, as in 

previous studies, the reported uncertainties on slopes and intercepts are significantly smaller – 

about five times less; see text]. The dashed grey curves show the 95% confidence envelops for 

the calculated least square calibration line. The plain grey curves show the 95% confidence 

envelop for a temperature prediction for a single ∆47 measurement. Panel b - Graphical summary 

of 95% confidence domain of uncertainty on temperature estimates based on ∆47 data of unknown 



  

 43 

samples using Equation [1]. The uncertainty on temperature estimates is shown as a function of 

both the temperature (y-axis) and the uncertainty on ∆47 measurements (contours) for an unknown 

sample. The uncertainty for the calibration alone is given by the solid black contours. Note that 

the reported uncertainties apply only to data obtained after 90°C acid digestion reaction and/or for 

conditions of analyses for which ∆*X-90°C is precisely known. 

 

Figure 4:  Panel a- Graphic representation of the (∆47CDES90 data used for the) calculations for 

estimating ∆* over acid digestion for dolomite and calcite plotted in the ∆47 versus 106/T2(K-2) 

space (see details in part 5.3) in the 0-1600°C temperature range. All ∆47 data are reported relative 

to the absolute CDES reference frame and refer to CO2 extracted by phosphoric acid digestion at 

90°C. Black circles are dolomite from this study and the plain thick line is the same as in Figure 3 

(i.e., Equation [1]). Light grey diamonds are inorganic calcites equilibrated at high temperatures 

from Passey and Henkes (2013). Dark grey diamonds are inorganic calcites equilibrated at T ≥ 

1550°C from Guo et al. (2009). Though it is difficult to rigorously estimate uncertainties on 

previously published data, they should be larger than those reported here for dolomites (since the 

former are averages of a maximum of three measurements versus a minimum of 4 measurements 

for the latter). The dashed curves represent the ∆63 dependence of 13C–18O bonds distribution with 

temperature inside the dolomite and calcite lattices (blue and grey respectively) as expected from 

ab-initio calculations (Schauble et al., 2006). The reported ∆*90 values were either empirically (in 

italic font) or experimentally (underlined font) determined. Panel b- Same data plotted in the ∆47 

versus temperature (in °C) space. The plain green curve shows the polynomial fit calculated 

based on the three sets of experimental data (Eq. [2]). The red trends represent the ∆47 dependence 

on temperature for the CO2 extracted from both dolomite and calcite (that are superimposed in 

this space) predicted by adding the fractionation factor ∆*90 = + 0.176‰ (estimated here for both 

dolomite and calcite) to the ∆63 theoretical predictions from Schauble et al., (2006) for these two 

minerals.  

 

Figure 5: Comparison of all ∆47 data directly reported relative to the CDES and digested at high 

temperatures (T ≥ 70°C) only (panel a = temperature range of 0-350°C; panel b = zoom in the 0-

80°C range). ∆47 data are averaged by sample and errors are not reported for more clarity. The 

plain black line as well as the grey dashed and plain envelops are the same than plotted in Figure 

3 (i.e., Equation [1]). Note that Kluge et al (2015) data are statistically offset from the group 

formed by the rest of the data (see Figure S3 and S4 for more details). In panel b only, the long-

dashed curves show: the polynomial trend from Equation [2] for the 25-1600°C temperature 
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range (green curve) and the theoretical ∆47 dependence with growth temperature for the CO2 

extracted from both dolomite and calcite (both superimposed - red curves) predicted by adding 

the fractionation factor ∆*90 = + 0.176‰ to the ∆63 theoretical predictions from Schauble et al., 

(2006) for these two minerals. 

 

Figure 6: Composite universal calibrations for all (Ca, Mg, Fe)CO3 carbonate minerals digested 

at high temperatures (T ≥ 70°C) and directly reported into CDES. Panel 6a shows ∆47CDES90 data 

and equations for inorganic minerals only (calcite, dolomite, aragonite and siderite determined at 

IPGP, Caltech, ETH, Tulane, and Michigan Universities – this represents a total of 48 mean ∆47 

values). Panel 6b shows the same data together with those from biogenic calcites and aragonites 

acquired at Johns Hopkins and Frankfurt universities (this represents a total of 103 mean ∆47 

values resulting from more than 331 ∆47 measurements). All ∆47CDES90 data were averaged by growth 

temperature and weighted from the standard deviation on carbonate standards corrected with the 

t-distribution factor for the 95% confidence interval and the considered number of replicate ∆47 

measurements in respective studies. [For clarity of the figure, the uncertainties on average ∆47 

values are plotted here only for inorganic samples – see Fig. S6 for a full report of the 95% 

confidence interval uncertainties as considered in our calculations]. This method presents the 

advantage that all ∆47 data are statistically treated in the same way, which eliminates a degree of 

uncertainty when comparing different datasets. In both panels: plain thick line = least square 

regression line calculated according to Minster et al. (1979) modified from York (1969); the 

dashed black curves show the 95% confidence envelop for the calculated least square calibration 

lines; the plain grey curves show the 95% confidence envelop for a temperature prediction for a 

single ∆47 measurement. On both panels we report the equation of the least-square regression 

fitting the data with uncertainties on slopes and intercepts given in 2σ  − note that if S.E. were 

considered instead, as in previous studies, the reported uncertainties on slopes and intercepts are 

significantly smaller (about three times less – see text for details). Panel c : Graphic summary of 

95% confidence domain of uncertainty on temperature estimates out of Equation [3]. The 

uncertainty on temperature estimates is shown as a function of both the temperature (y-axis) and 

the uncertainty on ∆47 measurements (contours) for an unknown sample. The uncertainty for the 

calibration alone is given by the solid black contours and is lower than ± 0.7ºC at 25ºC, ± 1ºC at 

50ºC (1σ) and comparable to those resulting from Equation [1] for higher temperatures. [Note 

that those uncertainties apply to data obtained for conditions of analyses for which ∆*X-90°C is 

precisely known and are larger when uncertainties on replicate ∆47 measurements are considered]. 
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Supplementary materials  

 

Table S1: Isotopic and chemical compositions of the initial materials (CaCO3, CO2 and solutions) 

used for the dolomitization experiments.  

 

Table S2: Full table of the data acquired at IPGP  

 

Table S3: Full table of the data acquired at Caltech.  

 

Figure S1: XRD spectra of the investigated samples. For the two samples generated at 100°C 

(100-A2 and 100-A3), the onsets figures show longer counting times with smaller steps in the 

area on interest.  

 

Figure S2: High-resolution transmission electron microscopy image of the bacterially-mediated 

precipitated samples shows d-spaces of the crystal lattice of 2.89 Å, which corresponds to the 

mineral dolomite. See Vasconcelos et al., (2016) for more details. 

 

Figure S3: Graphical representation of Kluge et al. (2015)’s data offset compared to theoretical 

and previously published data on high-temperature calcites. See Figure 4a caption for more 

details. 

 

Figure S4: Correlation ellipses between the slopes and intercepts for the ∆47 - 106/T2 regression 

lines calculated for both this study and the data from Kluge et al. (2015). The big square and 

circle represent the calculated respective slopes and intercept, with their 2σ uncertainties, 

showing that the two calibrations are statistically different from each other. All ∆47CDES90 data were, 

in respective studies, averaged by growth temperatures and weighted from the long-term external 

reproducibility obtained on carbonate standards (that is well-known since determined with large 

number of replicate ∆47 measurements) corrected with the t-distribution factor for the 95% 

confidence interval and the considered number of replicate ∆47 measurements of unknown 

samples. [This approach takes into account the small number of analyses n of unknown samples.] 
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Figure S5: Compilation of ∆47 values reported for Carrara reference material in Kluge et al., 

(2015) and this study only (hundreds of additional measurements were made since). Average 

∆47CDES25 values found for Carrara marble in the considered laboratories (IPGP, Caltech and 

Imperial College) are indistinguishable when respective uncertainties are taken into account. In 

contrast, the total variation range in ∆47 values reported in Kluge et al., (2015) is two times larger 

than that obtained over the course of this study.  

 

Figure S6: Same figure as Figure 6b with uncertainties on biogenic samples.   
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