1,756 research outputs found

    Climate is changing: are we changing too?

    Get PDF
    Many problems in the urban landscape can be reduced or eliminated by proper plant selection and by maintaining trees healthy so that they can fully provide their benefits. In a climate change scenario possible adaptation measures include changes to establishment practices and tree management, better matching of species to site, both under current and future climates, and the planting of non-native species and provenances in anticipation of climate change. Current opinion is to encourage the planting of local provenances of native species, citing adaptation of provenances to local conditions, and the requirement to maintain biodiversity and a native genetic base. However, local provenances may not be able to adapt to a changing climate, particularly given the rate of change predicted. Sourcing planting stock from regions with a current climate similar to that predicted for the future may provide one option, although care must be taken to ensure that suitable provenances are selected which are not at risk from, for example, spring frost damage as a result of early flushing. In this paper we'll focused on the technical and practical solutions for the selection of trees that might be the best choice in urban environments for the next future, given differences in urban sites (infrastructures, climate, soils etc), species attributes, management requirements and climate

    Precision medicine for genetic childhood movement disorders

    Get PDF
    Increasingly effective targeted precision medicine is either already available or in development for a number of genetic childhood movement disorders. Patient-centred, personalized approaches include the repurposing of existing treatments for specific conditions and the development of novel therapies that target the underlying genetic defect or disease mechanism. In tandem with these scientific advances, close collaboration between clinicians, researchers, affected families, and stakeholders in the wider community will be key to successfully delivering such precision therapies to children with movement disorders

    Role of Vegetation as a Mitigating Factor in the Urban Context

    Get PDF
    It is known that the urban environment amplifies the effects of climate change, sometimes with disastrous consequences that put people at risk. These aspects can be affected by urban vegetation and planting design but, while there are thousands of papers related to the effects of climate change, a relatively limited number of them are directly aimed at investigating the role of vegetation as a mitigating factor in the urban context. This paper focuses on reviewing the research on the role of urban vegetation in alleviating the adverse conditions of the urban environment in order to provide some practical guidelines to be applied by city planners. Through an analysis of the documents found in Scopus, Web of Science, and Google Scholar using urban vegetation and climate change-related keywords we selected five major issues related to the urban environment: (1) particulate matter, (2) gaseous pollution, (3) noise pollution, (4) water runoff, (5) urban heat island effect. The analysis of existing knowledge reported here indicates that the roles of urban vegetation on the adverse effect of climate change could not be simply deemed positive or negative, because the role of urban green is also strongly linked to the structure, composition, and distribution of vegetation, as well as to the criteria used for management. Therefore, it could help to better understand the roles of urban green as a complex system and provide the foundation for future studie

    Effect of phase noise on useful quantum correlations in Bose Josephson junctions

    Full text link
    In a two-mode Bose Josephson junction the dynamics induced by a sudden quench of the tunnel amplitude leads to the periodic formation of entangled states. For instance, squeezed states are formed at short times and macroscopic superpositions of phase states at later times. The two modes of the junction can be viewed as the two arms of an interferometer; use of entangled states allows to perform atom interferometry beyond the classical limit. Decoherence due to the presence of noise degrades the quantum correlations between the atoms, thus reducing phase sensitivity of the interferometer. We consider the noise induced by stochastic fluctuations of the energies of the two modes of the junction. We analyze its effect on squeezed states and macroscopic superpositions and study quantitatively the amount of quantum correlations which can be used to enhance the phase sensitivity with respect to the classical limit. To this aim we compute the squeezing parameter and the quantum Fisher information during the quenched dynamics. For moderate noise intensities we show that these useful quantum correlations increase on time scales beyond the squeezing regime. This suggests multicomponent superpositions as interesting candidates for high-precision atom interferometry

    An improvement of SPME-based sampling technique to collect volatile organic compounds from Quercus Ilex at the environmental level

    Get PDF
    Biogenic Volatile Organic Compounds (BVOCs) include many chemical compounds emitted by plants into the atmosphere. These compounds have a great effect on biosphere–atmosphere interactions and may affect the concentration of atmospheric pollutants, with further consequences on human health and forest ecosystems. Novel methods to measure and determine BVOCs in the atmosphere are of compelling importance considering the ongoing climate changes. In this study, we developed a fast and easy-to-handle analytical methodology to sample these compounds in field experiments using solid-phase microextraction (SPME) fibers at the atmospheric level. An improvement of BVOCs adsorption from SPME fibers was obtained by coupling the fibers with fans to create a dynamic sampling system. This innovative technique was tested sampling Q. ilex BVOCs in field conditions in comparison with the conventional static SPME sampling technique. The results showed a great potential of this dynamic sampling system to collect BVOCs at the atmosphere level, improving the efficiency and sensitivity of SPME fibers. Indeed, our novel device was able to reduce the sampling time, increase the amount of BVOCs collected through the fibers and add information regarding the emissions of these compounds at the environmental level

    Ghrelin in Central Neurons

    Get PDF
    Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission
    • …
    corecore