21 research outputs found

    Desarrollo de formulaciones derivadas de ácido poliláctico (PLA), mediante plastificación e incorporación de aditivos de origen natural

    Full text link
    Tesis por compendio"Development of polylactic acid (PLA)-derived formulations by plasticization and additives from renewable resources" The main objective of this doctoral thesis is the study, development and characterization of biodegradable or biocompatible materials from poly(lactic acid) (PLA) with improved properties for uses in several sectors such as food packaging, medical sector, etc. In order to modify the ductility and the stiffness of PLA, with the subsequent effects on its potential uses in different sectors, different fillers and/or additives were incorporated to PLA formulations by extrusion. Several plasticizers derived from vegetable oils and fatty acids were used; particularly, an epoxidized plasticizer derived from stearic acid (octyl epoxy stearate - OES) and a maleinized linseed oil - MLO were used. Another strategy that has been used in this research has focused on the development of binary blends with other polymers with increased ductility such as polycaprolactone (PCL) and thermoplastic starch (TPS). Finally, incorporation of several biocompatible/resorbable fillers derived from calcium orthophosphate (Ca3(PO4)2) such as ß-tricalcium phosphate (ß-TCP) and hydroxyapatite (HA), was carried out to widen the potential of these PLA-based materials in medical applications."Desarrollo de formulaciones derivadas de ácido poliláctico (PLA), mediante plastificación e incorporación de aditivos de origen natural" El objetivo principal de esta tesis doctoral es el estudio, desarrollo y caracterización de materiales biodegradables o biocompatibles de ácido poliláctico (PLA) con propiedades mejoradas para su aplicación en diversos sectores como el envasado de alimentos, sector médico, etc. Para modificar la ductilidad o rigidez del PLA y con ello su aptitud en los distintos campos, se lleva a cabo un estudio de la incorporación de diferentes cargas o aditivos, mediante mezclado por extrusión. Se han utilizado plastificantes derivados de aceites vegetales y ácidos grasos; en particular, un plastificante epoxidado derivado del ácido esteárico (epoxi estearato de octilo - OES) y un derivado maleinizado de aceite de linaza - MLO. Otra de las estrategias que se han abordado se ha centrado en el desarrollo de mezclas binarias con otros biopolímeros con mayor ductilidad como la policaprolactona (PCL) y el almidón termoplástico (TPS). Finalmente, se ha llevado a cabo la incorporación de cargas biocompatibles tipo ortofosfato cálcico (Ca3(PO4)2) como el ß-fosfato tricálcico (ß-TCP) y la hidroxiapatita (HA) para ampliar el potencial de estos materiales basados en PLA en el sector médico."Desenvolupament de formulacions derivades d'àcid polilàctic (PLA), mitjançant plastificació i incorporació d'additius d'origen natural" L'objectiu principal d'aquesta tesi doctoral és l'estudi, desenvolupament i caracterització de materials biodegradables i biocompatibles d'àcid polilàctic (PLA) amb propietats millorades per a la seua aplicació en diversos sectors com ara l'envasat d'aliments, sector mèdic, etc. Per tal de modificar la ductilitat o rigidesa del PLA, i amb això, la seua aptitud en els esmentats camps, s'ha fet un estudi de la incorporació de diferents càrregues o additius, mitjançant mesclat per extrusió. S'han utilitzat plastificants derivats d'olis vegetals i àcids grassos; en particular, un plastificant epoxidat derivat de l'àcid esteàric (epoxi estearat d'octil - OES) i un derivat maleinitzat d'oli llinós - MLO. Una altra estratègia que s'ha seguit s'ha centrat en el desenvolupament de mescles binàries amb altres polímers amb major ductilitat com ara la policaprolactona (PCL) i el midó termoplàstic (TPS). Finalment, s'ha dut a terme la incorporació de càrregues biocompatibles de tipus ortofosfat càlcic (Ca3(PO4)2) com ara el ß-fosfat tricàlcic (ß-TCP) i la hidroxiapatita (HA) per tal d'ampliar el potencial d'aquests materials basats en PLA al sector mèdic.Ferri Azor, JM. (2017). Desarrollo de formulaciones derivadas de ácido poliláctico (PLA), mediante plastificación e incorporación de aditivos de origen natural [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86166TESISPremios Extraordinarios de tesis doctoralesCompendi

    Dual Plasticizer/Thermal Stabilizer Effect of Epoxidized Chia Seed Oil (Salvia hispanica L.) to Improve Ductility and Thermal Properties of Poly(Lactic Acid)

    Full text link
    [EN] The use of a new bio-based plasticizer derived from epoxidized chia seed oil (ECO) was applied in a poly(lactic acid) (PLA) matrix. ECO was used due to its high epoxy content (6.7%), which led to an improved chemical interaction with PLA. Melt extrusion was used to plasticize PLA with different ECO content in the 0-10 wt.% range. Mechanical, morphological, and thermal characterization was carried out to evaluate the effect of ECO percentage. Besides, disintegration and migration tests were studied to assess the future application in packaging industry. Ductile properties improve by 700% in elongation at break with 10 wt.% ECO content. Field emission scanning electron microscopy (FESEM) showed a phase separation with ECO content equal or higher than 7.5 wt.%. Thermal stabilization was improved 14 degrees C as ECO content increased. All plasticized PLA was disintegrated under composting conditions, not observing a delay up to 5 wt.% ECO. Migration tests pointed out a very low migration, less than 0.11 wt.%, which is to interest to the packaging industry.I.D.-C. wants to thank Universitat Politecnica de Valencia for his FPI grant (PAID-2019-SP20190013) and Generalitat Valenciana (GVA) for his FPI grant (ACIF/2020/233). J.M.F. thanks the postdoc contract (APOSTD/2019/122) Generalitat Valenciana (2019-2021).Domínguez-Candela, I.; Ferri Azor, JM.; Cardona, SC.; Lora-García, J.; Fombuena, V. (2021). Dual Plasticizer/Thermal Stabilizer Effect of Epoxidized Chia Seed Oil (Salvia hispanica L.) to Improve Ductility and Thermal Properties of Poly(Lactic Acid). Polymers. 13(8):1-16. https://doi.org/10.3390/polym13081283S11613

    Dynamic-Mechanical and Decomposition Properties of Flax/Basalt Hybrid Laminates Based on an Epoxidized Linseed Oil Polymer

    Full text link
    [EN] This contribution focuses on the development of flax and flax/basalt hybrid reinforced composites based on epoxidized linseed oil (ELO) resin, exploiting the feasibility of different ratios of glutaric anhydride (GA) to maleinized linseed oil (MLO) in the hardener system (50:0, 40:10 and 30:20 wt.%) to provide crosslinked thermosets with balanced properties. The hybrid laminates have been manufactured by resin transfer molding (RTM) and subjected to dynamic-mechanical (DMA) and thermal gravimetry (TGA) analysis. The presence of glutaric anhydride (GA) resulted in hard and relatively brittle flax and flax/basalt laminates, whose loss moduli decreased as the number of basalt plies diminished. Furthermore, the increase in MLO content in the GA:MLO hardener system shifted the glass transition temperatures (T-g) from 70 degrees C to 59 and 56 degrees C, which is representative of a decrease in brittleness of the crosslinked resin. All samples exhibited two stages of their decomposition process irrespective of the MLO content. The latter influenced the residual mass content that increased with the increase of the MLO wt.% from 10 to 30 wt.%, with shifts of the final degradation temperatures from 410 degrees C to 425 degrees C and 445 degrees C, respectively.This research was funded by the Ministry of Science, Innovation, and Universities (MICIU) project numbers MAT2017-84909-C2-2-R.Motoc, DL.; Ferri Azor, JM.; Ferrándiz Bou, S.; Garcia-Garcia, D.; Balart, R. (2021). Dynamic-Mechanical and Decomposition Properties of Flax/Basalt Hybrid Laminates Based on an Epoxidized Linseed Oil Polymer. Polymers. 13(4):1-11. https://doi.org/10.3390/polym1304047911113

    Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches

    Full text link
    [EN] In this study, different compatibilizing agents were used to analyze their influence on immiscible blends of polylactide (PLA) and biobased high-density polyethylene (bioPE) 80/20 (wt/wt). The compatibilizing agents used were polyethylene vinyl acetate (EVA) with a content of 33% of vinyl acetate, polyvinyl alcohol (PVA), and dicumyl peroxide (DPC). The influence of each compatibilizing agent on the mechanical, thermal, and microstructural properties of the PLA-bioPE blend was studied using different microscopic techniques (i.e., field emission electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy with PeakForce quantitative nanomechanical mapping (AFM-QNM)). Compatibilized PLA-bioPE blends showed an improvement in the ductile properties, with EVA being the compatibilizer that provided the highest elongation at break and the highest impact-absorbed energy (Charpy test). In addition, it was observed by means of the different microscopic techniques that the typical droplet-like structure is maintained, but the use of compatibilizers decreases the dimensions of the dispersed droplets, leading to improved interfacial adhesion, being more pronounced in the case of the EVA compatibilizer. Furthermore, the incorporation of the compatibilizers caused a very marked decrease in the crystallinity of the immiscible PLA-bioPE blendThis research was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R.Ferri Azor, JM.; Garcia-Garcia, D.; Rayón Encinas, E.; Samper, M.; Balart, R. (2020). Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches. Polymers. 12(6):1-20. https://doi.org/10.3390/polym12061344S120126Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M.-C. (2019). Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307-360. doi:10.1016/j.ijbiomac.2018.12.002Farto-Vaamonde, X., Auriemma, G., Aquino, R. P., Concheiro, A., & Alvarez-Lorenzo, C. (2019). Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications. European Journal of Pharmaceutics and Biopharmaceutics, 141, 100-110. doi:10.1016/j.ejpb.2019.05.018Fajardo, J., Valarezo, L., López, L., & Sarmiento, A. (2013). Experiencies in obtaining polymeric composites reinforced with natural fiber from Ecuador. Ingenius, (9). doi:10.17163/ings.n9.2013.04Ferri, J. M., Garcia-Garcia, D., Carbonell-Verdu, A., Fenollar, O., & Balart, R. (2017). Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. Journal of Applied Polymer Science, 135(4), 45751. doi:10.1002/app.45751Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Gao, H., Hu, S., Su, F., Zhang, J., & Tang, G. (2011). Mechanical, thermal, and biodegradability properties of PLA/modified starch blends. Polymer Composites, 32(12), 2093-2100. doi:10.1002/pc.21241Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009Iglesias Montes, M. L., Cyras, V. P., Manfredi, L. B., Pettarín, V., & Fasce, L. A. (2020). Fracture evaluation of plasticized polylactic acid / poly (3-HYDROXYBUTYRATE) blends for commodities replacement in packaging applications. Polymer Testing, 84, 106375. doi:10.1016/j.polymertesting.2020.106375Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079Mittal, V., Akhtar, T., & Matsko, N. (2015). Mechanical, Thermal, Rheological and Morphological Properties of Binary and Ternary Blends of PLA, TPS and PCL. Macromolecular Materials and Engineering, 300(4), 423-435. doi:10.1002/mame.201400332Umamaheswara Rao, R., Venkatanarayana, B., & Suman, K. N. . (2019). Enhancement of Mechanical Properties of PLA/PCL (80/20) Blend by Reinforcing with MMT Nanoclay. Materials Today: Proceedings, 18, 85-97. doi:10.1016/j.matpr.2019.06.280Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69Wang, X., Peng, S., Chen, H., Yu, X., & Zhao, X. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Composites Part B: Engineering, 173, 107028. doi:10.1016/j.compositesb.2019.107028Kilic, N. T., Can, B. N., Kodal, M., & Ozkoc, G. (2018). Compatibilization of PLA/PBAT blends by using Epoxy-POSS. Journal of Applied Polymer Science, 136(12), 47217. doi:10.1002/app.47217Gere, D., & Czigany, T. (2020). Future trends of plastic bottle recycling: Compatibilization of PET and PLA. Polymer Testing, 81, 106160. doi:10.1016/j.polymertesting.2019.106160Palma-Ramírez, D., Torres-Huerta, A. M., Domínguez-Crespo, M. A., Del Angel-López, D., Flores-Vela, A. I., & de la Fuente, D. (2019). Data supporting the morphological/topographical properties and the degradability on PET/PLA and PET/chitosan blends. Data in Brief, 25, 104012. doi:10.1016/j.dib.2019.104012Hachemi, R., Belhaneche-Bensemra, N., & Massardier, V. (2013). Elaboration and characterization of bioblends based on PVC/PLA. Journal of Applied Polymer Science, 131(7), n/a-n/a. doi:10.1002/app.40045Nehra, R., Maiti, S. N., & Jacob, J. (2017). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 45644. doi:10.1002/app.45644Jašo, V., Cvetinov, M., Rakić, S., & Petrović, Z. S. (2014). Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends. Journal of Applied Polymer Science, 131(22), n/a-n/a. doi:10.1002/app.41104Mandal, D. K., Bhunia, H., & Bajpai, P. K. (2018). Thermal degradation kinetics of PP/PLA nanocomposite blends. Journal of Thermoplastic Composite Materials, 32(12), 1714-1730. doi:10.1177/0892705718805130Azizi, S., Azizi, M., & Sabetzadeh, M. (2019). The Role of Multiwalled Carbon Nanotubes in the Mechanical, Thermal, Rheological, and Electrical Properties of PP/PLA/MWCNTs Nanocomposites. Journal of Composites Science, 3(3), 64. doi:10.3390/jcs3030064Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396Boubekeur, B., Belhaneche‐Bensemra, N., & Massardier, V. (2020). Low‐Density Polyethylene/Poly(Lactic Acid) Blends Reinforced by Waste Wood Flour. Journal of Vinyl and Additive Technology, 26(4), 443-451. doi:10.1002/vnl.21759Torres Huerta, A. M. (2019). PREPARATION AND DEGRADATION STUDY OF HDPE/PLA POLYMER BLENDS FOR PACKAGING APPLICATIONS. Revista Mexicana de Ingeniería Química, 18(1), 251-271. doi:10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/torresDolores, S. M., Marina Patricia, A., Santiago, F., & Juan, L. (2014). Influence of biodegradable materials in the recycled polystyrene. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41161Samper, M., Bertomeu, D., Arrieta, M., Ferri, J., & López-Martínez, J. (2018). Interference of Biodegradable Plastics in the Polypropylene Recycling Process. Materials, 11(10), 1886. doi:10.3390/ma11101886Hermes, H. E., Higgins, J. S., & Bucknall, D. G. (1997). Investigation of the melt interface between polyethylene and polystyrene using neutron reflectivity. Polymer, 38(4), 985-989. doi:10.1016/s0032-3861(96)00719-7Wang, Y., & Hillmyer, M. A. (2001). Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. Journal of Polymer Science Part A: Polymer Chemistry, 39(16), 2755-2766. doi:10.1002/pola.1254Anderson, K. S., & Hillmyer, M. A. (2004). The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer, 45(26), 8809-8823. doi:10.1016/j.polymer.2004.10.047Singh, G., Bhunia, H., Rajor, A., & Choudhary, V. (2010). Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends. Polymer Bulletin, 66(7), 939-953. doi:10.1007/s00289-010-0367-xDjellali, S., Haddaoui, N., Sadoun, T., Bergeret, A., & Grohens, Y. (2013). Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iranian Polymer Journal, 22(4), 245-257. doi:10.1007/s13726-013-0126-6Brito, G. F., Agrawal, P., & Mélo, T. J. A. (2016). Mechanical and Morphological Properties of PLA/BioPE Blend Compatibilized with E-GMA and EMA-GMA Copolymers. Macromolecular Symposia, 367(1), 176-182. doi:10.1002/masy.201500158Zolali, A. M., & Favis, B. D. (2018). Toughening of Cocontinuous Polylactide/Polyethylene Blends via an Interfacially Percolated Intermediate Phase. Macromolecules, 51(10), 3572-3581. doi:10.1021/acs.macromol.8b00464Xu, Y., Loi, J., Delgado, P., Topolkaraev, V., McEneany, R. J., Macosko, C. W., & Hillmyer, M. A. (2015). Reactive Compatibilization of Polylactide/Polypropylene Blends. Industrial & Engineering Chemistry Research, 54(23), 6108-6114. doi:10.1021/acs.iecr.5b00882Quiles-Carrillo, L., Fenollar, O., Balart, R., Torres-Giner, S., Rallini, M., Dominici, F., & Torre, L. (2020). A comparative study on the reactive compatibilization of melt-processed polyamide 1010/polylactide blends by multi-functionalized additives derived from linseed oil and petroleum. Express Polymer Letters, 14(6), 583-604. doi:10.3144/expresspolymlett.2020.48Detyothin, S., Selke, S. E. M., Narayan, R., Rubino, M., & Auras, R. A. (2015). Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. Journal of Applied Polymer Science, 132(28), n/a-n/a. doi:10.1002/app.42230Semba, T., Kitagawa, K., Ishiaku, U. S., Kotaki, M., & Hamada, H. (2006). Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide. Journal of Applied Polymer Science, 103(2), 1066-1074. doi:10.1002/app.25311Srimalanon, P., Prapagdee, B., Markpin, T., & Sombatsompop, N. (2018). Effects of DCP as a free radical producer and HPQM as a biocide on the mechanical properties and antibacterial performance of in situ compatibilized PBS/PLA blends. Polymer Testing, 67, 331-341. doi:10.1016/j.polymertesting.2018.03.017Wang, N., Yu, J., & Ma, X. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(11), 1440-1447. doi:10.1002/pi.2302Ferri, J. M., Samper, M. D., García-Sanoguera, D., Reig, M. J., Fenollar, O., & Balart, R. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science, 51(11), 5356-5366. doi:10.1007/s10853-016-9838-2Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-yButt, H.-J., Cappella, B., & Kappl, M. (2005). Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1-6), 1-152. doi:10.1016/j.surfrep.2005.08.003Frybort, S., Obersriebnig, M., Müller, U., Gindl-Altmutter, W., & Konnerth, J. (2014). Variability in surface polarity of wood by means of AFM adhesion force mapping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 82-87. doi:10.1016/j.colsurfa.2014.05.055Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1994). Effect of contact deformations on the adhesion of particles. Progress in Surface Science, 45(1-4), 131-143. doi:10.1016/0079-6816(94)90044-2Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Li, Z.-M., Yang, W., Xie, B.-H., Yang, S. ., Yang, M.-B., Feng, J.-M., & Huang, R. (2003). Effects of compatibilization on the essential work of fracture parameters of in situ microfiber reinforced poly(ethylene terephtahalate)/polyethylene blend. Materials Research Bulletin, 38(14), 1867-1878. doi:10.1016/j.materresbull.2003.07.007Ma, P., Hristova-Bogaerds, D. G., Goossens, J. G. P., Spoelstra, A. B., Zhang, Y., & Lemstra, P. J. (2012). Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. European Polymer Journal, 48(1), 146-154. doi:10.1016/j.eurpolymj.2011.10.015Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018Zhou, Y., Wang, J., Cai, S.-Y., Wang, Z.-G., Zhang, N.-W., & Ren, J. (2018). Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends. Polymer Bulletin, 75(12), 5437-5454. doi:10.1007/s00289-018-2339-5Sewda, K., & Maiti, S. N. (2013). Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polymer Bulletin, 70(10), 2657-2674. doi:10.1007/s00289-013-0941-0Gao, J., Bai, H., Zhang, Q., Gao, Y., Chen, L., & Fu, Q. (2012). Effect of homopolymer poly(vinyl acetate) on compatibility and mechanical properties of poly(propylene carbonate)/poly(lactic acid) blends. Express Polymer Letters, 6(11), 860-870. doi:10.3144/expresspolymlett.2012.92Ma, X., Yu, J., & Wang, N. (2005). Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. Journal of Polymer Science Part B: Polymer Physics, 44(1), 94-101. doi:10.1002/polb.20669Lu, X., Tang, L., Wang, L., Zhao, J., Li, D., Wu, Z., & Xiao, P. (2016). Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polymer Testing, 54, 90-97. doi:10.1016/j.polymertesting.2016.06.025Zhao, M., Ding, X., Mi, J., Zhou, H., & Wang, X. (2017). Role of high-density polyethylene in the crystallization behaviors, rheological property, and supercritical CO2 foaming of poly (lactic acid). Polymer Degradation and Stability, 146, 277-286. doi:10.1016/j.polymdegradstab.2017.11.003Quitadamo, A., Massardier, V., Santulli, C., & Valente, M. (2018). Optimization of Thermoplastic Blend Matrix HDPE/PLA with Different Types and Levels of Coupling Agents. Materials, 11(12), 2527. doi:10.3390/ma11122527Gallego, R., López-Quintana, S., Basurto, F., Núñez, K., Villarreal, N., & Merino, J. C. (2013). Synthesis of new compatibilizers to poly(lactic acid) blends. Polymer Engineering & Science, 54(3), 522-530. doi:10.1002/pen.23589Lovinčić Milovanović, V., Hajdinjak, I., Lovriša, I., & Vrsaljko, D. (2019). The influence of the dispersed phase on the morphology, mechanical and thermal properties of PLA/PE‐LD and PLA/PE‐HD polymer blends and their nanocomposites with TiO 2 and CaCO 3. Polymer Engineering & Science, 59(7), 1395-1408. doi:10.1002/pen.25124Ji, D., Liu, Z., Lan, X., Wu, F., Xie, B., & Yang, M. (2013). Morphology, rheology, crystallization behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/dicumyl peroxide reactive blends. Journal of Applied Polymer Science, 131(3), n/a-n/a. doi:10.1002/app.39580Vrsaljko, D., Macut, D., & Kovačević, V. (2014). Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends. Journal of Applied Polymer Science, 132(6), n/a-n/a. doi:10.1002/app.4141

    Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate)

    Full text link
    This is the accepted version of the following article: Garcia-Garcia, D.; J. M. Ferri; N. Montanes; López-Martínez, J.; R. Balart (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International. 65(10):1157-1164. doi:10.1002/pi.5164.], which has been published in final form at http://dx.doi.org/10.1002/pi.5164.The effect of various epoxidized vegetable oils as potential plasticizers for poly(3-hydroxybutyrate) (PHB) was evaluated in terms of changes in mechanical and thermal properties and morphology. PHB is a biodegradable aliphatic polyester obtained from bacterial fermentation. High stiffness and fragility are two of its main drawbacks. To overcome this behaviour, PHB was plasticized with various amounts of two different epoxidized vegetable oils: epoxidized linseed oil (ELO) and epoxidized soybean oil (ESBO). The total ELO and ESBO content varied in the range 5 phr (per hundred resin) to 20 phr and plasticized PHB materials were obtained by melt extrusion and compounding followed by injection moulding. The results show that the plasticizing effect provided by ELO is more efficient than that by ESBO with balanced properties at a concentration of 10 phr ELO. ELO addition leads to an improvement in mechanical ductile properties with a noticeable increase in elongation at break and impact absorbed energy. With regard to thermal properties, the addition of both ELO and ESBO leads to a marked increase in thermal stability of PHB. All these findings suggest that addition of 10 phr ELO leads to optimized PHB formulations with potential uses in technical applications. (c) 2016 Society of Chemical IndustryThis research was supported by the Ministry of Economy and Competitiveness-MINECO, Ref. MAT2014-59242-C2-1-R. The authors also thank the Conselleria d'Educacio, Cultura i Esport -Generalitat Valenciana, Ref. GV/2014/008, for financial support. DG-G thanks the Spanish Ministry of Education, Culture and Sports for financial support through an FPU grant (FPU13/06011).García García, D.; Ferri Azor, JM.; Montañés Muñoz, N.; López-Martínez, J.; Balart Gimeno, RA. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International. 65(10):1157-1164. https://doi.org/10.1002/pi.5164S11571164651

    Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00289-016-1659-6[EN] The present work is focused on the development of binary blends from poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL). Miscibility, mechanical and thermal properties as well as blends morphology are evaluated in terms of the blend composition. Binary PHB PCL blends were manufactured by melt compounding in a twin screw co-rotating extruder and injection molded. The composition of PHB PCL covered the full range between individual polymers at 25 wt% increments. The obtained results show that PCL acts as an impact modifier, thus leading to an increase in flexibility and ductility as the PCL content in the PHB PCL blends increases with a noticeable increase in elongation at break and on the energy absorption in impact conditions. The tensile strength and the elastic modulus decrease with increasing PCL content in the PHB PCL blends; nevertheless, the flexural strength and the flexural modulus reach the highest values for the PHB PCL blends containing 25 wt% PCL, with a remarkable decrease over this composition. The analysis of fractured surfaces by field emission scanning electron microscopy and thermal properties obtained by differential scanning calorimetry (DSC) and TGA give clear evidences of the immiscibility of these two biodegradable polymers. Additionally, DSC results showed an increase in crystallinity of both PHB and PCL with regard to individual polymers for PHB PCL blends containing 25 wt% PCL. Furthermore, an increase in the degradation onset (T0) of about 30 C higher was detected for the same blends. Dynamic mechanical thermal analysis showed slightly shifted glass transition temperatures of each individual polymer, thus indicating that although both PHB and PCL are not fully miscible, some interactions between them occur.This research was supported by the Ministry of Economy and Competitiveness-MINECO, Ref: MAT2014-59242-C2-1-R. The authors also thank the "Conselleria d'Educacio, Cultura i Esport"-Generalitat Valenciana, Ref: GV/2014/008 for financial support. D. Garcia-Garcia thanks the Spanish Ministry of Education, Culture and Sports for their financial support through an FPU Grant (FPU13/06011).García García, D.; Ferri Azor, JM.; Boronat Vitoria, T.; López-Martínez, J.; Balart Gimeno, RA. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin. 73(12):3333-3350. https://doi.org/10.1007/s00289-016-1659-6S333333507312Arrieta MP, Samper MD, López J, Jiménez A (2014) Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging. J Polym Environ 22:460–470. doi: 10.1007/s10924-014-0654-yZhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79. doi: 10.1002/adv.20235Simoes CL, Viana JC, Cunha AM (2009) Mechanical properties of poly(epsilon-caprolactone) and poly(lactic acid) blends. J Appl Polym Sci 112:345–352. doi: 10.1002/app.29425Wei L, Liang S, McDonald AG (2015) Thermophysical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue. Ind Crops Prod 69:91–103. doi: 10.1016/j.indcrop.2015.02.011Dias M, Moraes Antunes MC, Santos AR Jr, Felisberti MI (2008) Blends of poly(3-hydroxybutyrate) and poly(p-dioxanone): miscibility, thermal stability and biocompatibility. J Mater Sci Mater Med 19:3535–3544. doi: 10.1007/s10856-008-3531-1Catiker E, Sancaktar E (2014) Blends of poly(3-hydroxybutyrate) with poly(b-alanine) and its derivatives. J Appl Polym Sci 131:40484. doi: 10.1002/app.40484Janigova I, Lacik I, Chodak I (2002) Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polym Degrad Stab 77:35–41. doi: 10.1016/s0141-3910(02)00077-0Abdelwahab MA, Flynn A, Chiou B-S, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab 97:1822–1828. doi: 10.1016/j.Polymdegradstab.05.036Ma P, Cai X, Wang W, Duan F, Shi D, Lemstra PJ (2014) Crystallization behavior of partially crosslinked poly(beta-hydroxyalkonates)/poly(butylene succinate) Blends. J Appl Polym Sci 131:41020. doi: 10.1002/app.41020Ma P, Hristova-Bogaerds DG, Zhang Y, Lemstra PJ (2014) Enhancement in crystallization kinetics of the bacterially synthesized poly(beta-hydroxybutyrate) by poly(butylene succinate). Polym Bull 71:907–923. doi: 10.1007/s00289-014-1101-xAl-Salah HA (1998) Crystallization and morphology of poly(ethylene succinate) and poly(beta-hydroxybutyrate) blends. Polym Bull 41:593–600. doi: 10.1007/s002890050406Gassner F, Owen AJ (1994) Physical-properties of poly(beta-hydroxybutyrate) poly(epsilon-caprolactone) blends. Polymer 35:2233–2236. doi: 10.1016/0032-3861(94)90258-5Lovera D, Marquez L, Balsamo V, Taddei A, Castelli C, Muller AJ (2007) Crystallization, morphology, and enzymatic degradation of polyhydroxybutyrate/polycaprolactone (PHB/PCL) blends. Macromol Chem Phys 208:924–937. doi: 10.1002/macp.200700011Kim BO, Woo SI (1998) Compatibilizing capability of poly(beta-hydroxybutyrate-co-epsilon-caprolactone) in the blend of poly(beta-hydroxybutyrate) and poly(epsilon-caprolactone). Polym Bull 41:707–712. doi: 10.1007/s002890050422Valdes Garcia A, Ramos Santonja M, Beltran Sanahuja A, del Carmen Garrigos Selva M (2014) Characterization and degradation characteristics of poly (epsilon-caprolactone)-based composites reinforced with almond skin residues. Polym Degrad Stab 108:269–279. doi: 10.1016/j.polymdegradstab.2014.03.011Patricio T, Bartolo P (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng 59:292–297. doi: 10.1016/j.proeng.2013.05.124Harrison KL, Jenkins MJ (2004) The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone. Polym Int 53:1298–1304. doi: 10.1002/pi.1517Fukushima K, Luis Feijoo J, Yang M-C (2013) Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur Polym J 49:706–717. doi: 10.1016/j.eurpolymj.2012.12.011Li Y, Dong Q, Han C, Bian Y, Zhang X, Dong L (2014) Toward environment-friendly composites of poly(e-caprolactone) reinforced with stereocomplex-type poly(L-lactide)/poly(D-lactide). J Appl Polym Sci 131:40208. doi: 10.1002/app.40208Imre B, Pukanszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49:1215–1233. doi: 10.1016/j.eurpolymj.2013.01.019Hinueber C, Haeussler L, Vogel R, Bruenig H, Heinrich G, Werner C (2011) Hollow fibers made from a poly(3-hydroxybutyrate)/poly-epsilon-caprolactone blend. eXPRESS Polym Lett 5:643–652. doi: 10.3144/expresspolymlett.2011.62Kumagai Y, Doi Y (1992) Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxy butyrate) with poly(epsilon-caprolactone), poly(1,4-butylene adipate and poly(vinyl acetate). Polym Degrad Stab 36:241–248. doi: 10.1016/0141-3910(92)90062-aAvella M, Martuscelli E, Raimo M (2000) Review—properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545. doi: 10.1023/a:1004740522751Katsumata K, Saito T, Yu F, Nakamura N, Inoue Y (2011) The toughening effect of a small amount of poly(epsilon-caprolactone) on the mechanical properties of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/PCL blend. Polym J (Tokyo, Jpn) 43:484–492. doi: 10.1038/pj.2011.12Monticelli O, Calabrese M, Gardella L, Fina A, Gioffredi E (2014) Silsesquioxanes: novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends. Eur Polym J 58:69–78. doi: 10.1016/j.eurpolymj.2014.06.021Prakalathan K, Mohanty S, Nayak SK (2014) Reinforcing effect and isothermal crystallization kinetics of poly(3-hydroxybutyrate) nanocomposites blended with organically modified montmorillonite. Polym Compos 35:999–1012. doi: 10.1002/pc.22746Wang L, Zhu W, Wang X, Chen X, Chen G-Q, Xu K (2008) Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci 107:166–173. doi: 10.1002/app.27004Mofokeng JP, Luyt AS (2015) Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(epsilon-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. J Mater Sci 50:3812–3824. doi: 10.1007/s10853-015-8950-

    Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends

    Full text link
    This is the accepted version of the following article: Ferri, J. M.; Fenollar, O.; Jorda-Vilaplana, A.; Garcia-Sanoguera, D.; Balart, R. (2016). "Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends". Polymer International. 65(4):453-463. doi:10.1002/pi.5079., which has been published in final form at http://dx.doi.org/10.1002/pi.5079 .Binary blends based on poly(lactic acid) (PLA) and polycaprolactone (PCL) were prepared by melt mixing in a twin-screw co-rotating extruder in order to increase the low intrinsic elongation at break of PLA for packaging applications. Although PLA and PCL show low miscibility, the presence of PCL leads to a marked improvement in the ductile properties of PLA. Various mechanical properties were evaluated in terms of PCL content up to 30wt% PCL. In addition to tensile and flexural properties, Poisson s ratio was obtained using biaxial extensometry to evaluate transversal deformations when axial loads are applied. Very slight changes in the melt temperature and glass transition temperature of PLA are observed thus indicating the low miscibility of the PLA PCL system. Field emission scanning electron microscopy reveals some interactions between the two components of the blend since the morphology is characterized by non-spherical polycaprolactone drops dispersed into the PLA matrix. In addition to the improvement of mechanical ductile properties, PCL provides higher degradation rates of blends under conditions of composting for contents below 22.5% PCL.This research was supported by the Ministry of Economy and Competitiveness - MINECO, ref. MAT2014-59242-C2-1-R. The authors also thank the Conselleria d'Educacio, Cultura i Esport - Generalitat Valenciana, ref. GV/2014/008 for financial support.Ferri Azor, JM.; Fenollar Gimeno, OÁ.; Jorda-Vilaplana, A.; García Sanoguera, D.; Balart Gimeno, RA. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends. Polymer International. 65(4):453-463. https://doi.org/10.1002/pi.5079S45346365

    Comparative Study of the Properties of Plasticized Polylactic Acid with Maleinized Hemp Seed Oil and a Novel Maleinized Brazil Nut Seed Oil

    Full text link
    [EN] In this study, for the first time, Brazil nut seed oil was chemically modified with maleic anhydride to obtain maleinized Brazil nut seed oil (MBNO). The same process was developed to obtain maleinized hemp seed oil (MHO). The use of MBNO and MHO was studied as bio-based plasticizers by incorporating them with different contents ranging from 0 to 10 phr in a polylactic acid (PLA) matrix. By means of mechanical, thermal and thermomechanical characterization techniques, the properties of the different formulations were studied to evaluate the plasticizing effect of the MBNO and MHO. With the addition of both plasticizers, a significant increase in ductile properties was observed, reaching an increase in elongation at break of 643% with 7.5 phr MBNO and 771% with 10 phr MHO compared to neat PLA. In addition, it has been observed that the mechanical resistant properties do not decrease, since the oils enhance the crystallization of PLA by increasing the free volume between its chains and counteracting the effect. Finally, a disintegration test was carried out under thermophilic conditions at 58 degrees C for 27 days, demonstrating that the incorporation of MHO and MBNO does not significantly affect the biodegradability of neat PLA.I.D.-C. wants to thank Universitat Politecnica de Valencia for his FPI grant (PAID-2019SP20190013) and Generalitat Valenciana (GVA) for his FPI grant (ACIF/2020/233). J.M.F. thanks the postdoc contract (APOSTD/2019/122) Generalitat Valenciana (2019-2021).Perez-Nakai, A.; Lerma-Cantó, A.; Domínguez-Candela, I.; Garcia-Garcia, D.; Ferri Azor, JM.; Fombuena, V. (2021). Comparative Study of the Properties of Plasticized Polylactic Acid with Maleinized Hemp Seed Oil and a Novel Maleinized Brazil Nut Seed Oil. Polymers. 13(14):1-17. https://doi.org/10.3390/polym13142376S117131

    Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid)

    Full text link
    Poly(lactic acid), PLA, is a polyester that can be produced from lactic acid derived from renewable resources. This polymer offers attracting uses in packaging industry due to its biodegradability and high tensile strength. However, PLA is quite brittle, which limits its applications. To overcome this drawback, PLA was plasticized with epoxy-type plasticizer derived from a fatty acid, octyl epoxy stearate (OES) at different loadings (1, 3, 5, 10, 15, and 20 phr). The addition of OES decreases the glass transition temperature and provides a remarkable increase in elongation at break and impact-absorbed energy. Plasticizer saturation occurs at relatively low concentrations of about 5 phr OES; higher concentration leads to phase separation as observed by field emission scanning electron microscopy (FESEM). Optimum balanced mechanical properties are obtained at relatively low concentrations of OES (5 phr), thus indicating the usefulness of this material as environmentally friendly plasticizer for PLA industrial formulations.This research was supported by the Ministry of Economy and Competitiveness-MINECO, Ref: MAT2014-59242-C2-1-R. Authors also thank to "Conselleria d'Educacio, Cultura i Esport"-Generalitat Valenciana, Ref: GV/2014/008 for financial support.Ferri Azor, JM.; Samper Madrigal, MD.; García Sanoguera, D.; Reig Pérez, MJ.; Fenollar Gimeno, OÁ.; Balart Gimeno, RA. (2016). Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). Journal of Materials Science. 51(11):5356-5366. https://doi.org/10.1007/s10853-016-9838-2S535653665111Alam J, Alam M, Raja M, Abduljaleel Z, Dass LA (2014) MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour. Int J Mol Sci 15(11):19924–19937. doi: 10.3390/ijms151119924Arrieta MP, Fortunati E, Dominici F, Lopez J, Kenny JM (2015) Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohydr Polym 121:265–275. doi: 10.1016/j.carbpol.2014.12.056Dharmalingam S, Hayes DG, Wadsworth LC, Dunlap RN, DeBruyn JM, Lee J, Wszelaki AL (2015) Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. J Polym Environ 23(3):302–315. doi: 10.1007/s10924-015-0716-9Lin C-M, Lin C-H, Huang Y-T, Lou C-W, Lin J-H (2013) Mechanical and electrical properties of the polyaniline (PANI)/polylactic acid (PLA) nonwoven fabric. In: Kida K (ed), Machine design and manufacturing engineering II, Pts 1 and 2, vols 365–366. pp 1074–1077. doi: 10.4028/www.scientific.net/AMM.365-366.1074Serafini Immich AP, Lis Arias M, Carreras N, Luis Boemo R, Antonio Tornero J (2013) Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Mater Sci Eng C-Mater Biol Appl 33(7):4002–4008. doi: 10.1016/j.msec.2013.05.034Llorens E, Calderon S, del Valle LJ, Puiggali J (2015) Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater Sci Eng C-Mater Biol Appl 50:74–84. doi: 10.1016/j.msec.2015.01.100Nainar SMM, Begum S, Ansari MNM, Hoque ME, Aini SS, Ng MH, Ruszymah BHI (2014) Effect of compatibilizers on in vitro biocompatibility of PLA-HA bioscaffold. Bioinspired Biomim Nanobiomater 3(4):208–216. doi: 10.1680/bbn.14.00014Huang R, Zhu X, Tu H, Wan A (2014) The crystallization behavior of porous poly(lactic acid) prepared by modified solvent casting/particulate leaching technique for potential use of tissue engineering scaffold. Mater Lett 136:126–129. doi: 10.1016/j.matlet.2014.08.044Yesid Gomez-Pachon E, Manuel Sanchez-Arevalo F, Sabina FJ, Maciel-Cerda A, Montiel Campos R, Batina N, Morales-Reyes I, Vera-Graziano R (2013) Characterisation and modelling of the elastic properties of poly(lactic acid) nanofibre scaffolds. J Mater Sci 48(23):8308–8319. doi: 10.1007/s10853-013-7644-7Zhang J, Yin H-M, Hsiao BS, Zhong G-J, Li Z-M (2014) Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching. J Mater Sci 49(4):1648–1658. doi: 10.1007/s10853-013-7848-xArmentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jimenez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Exp Polym Lett 9(7):583–596. doi: 10.3144/expresspolymlett.2015.55Patricia Arrieta M, del Mar Castro-Lopez M, Rayon E, Fernando Barral-Losada L, Manuel Lopez-Vilarino J, Lopez J, Victoria Gonzalez-Rodriguez M (2014) Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem 62(41):10170–10180. doi: 10.1021/jf5029812He Y, Hu Z, Ren M, Ding C, Chen P, Gu Q, Wu Q (2014) Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures. J Mater Sci-Mater Med 25(2):561–571. doi: 10.1007/s10856-013-5073-4Vieira AC, Vieira JC, Ferra JM, Magalhaes FD, Guedes RM, Marques AT (2011) Mechanical study of PLA-PCL fibers during in vitro degradation. J Mech Behav Biomed Mater 4(3):451–460. doi: 10.1016/j.jmbbm.2010.12.006K-y Zhang, X-h Ran, Y-g Zhuang, Yao B, L-s Dong (2009) Blends of poly(lactic acid) with thermoplastic acetylated starch. Chem Res Chin Univ 25(5):748–753Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ (2013) Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): mechanical, thermal, and morphology properties. J Appl Polym Sci 130(6):4576–4580. doi: 10.1002/app.39742Yu Y, Cheng Y, Ren J, Cao E, Fu X, Guo W (2015) Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. J Appl Polym Sci 132(16). doi: 10.1002/app.41808Nazari T, Garmabi H (2014) Polylactic acid/polyethylene glycol blend fibres prepared via melt electrospinning: effect of polyethylene glycol content. Micro Nano Lett 9(10):686–690. doi: 10.1049/mnl.2013.0735Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer 47(20):7178–7188. doi: 10.1016/j.polymer.2006.03.115Burgos N, Martino VP, Jimenez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658. doi: 10.1016/j.polymdegradstab.2012.11.009Dobircau L, Delpouve N, Herbinet R, Domenek S, Le Pluart L, Delbreilh L, Ducruet V, Dargent E (2015) Molecular mobility and physical ageing of plasticized poly(lactide). Polym Eng Sci 55(4):858–865. doi: 10.1002/pen.23952Hassouna F, Raquez J-M, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) New development on plasticized poly(lactide): chemical grafting of citrate on PLA by reactive extrusion. Eur Polymer J 48(2):404–415. doi: 10.1016/j.eurpolymj.2011.12.001Tsou C-H, Suen M-C, Yao W-H, Yeh J-T, Wu C-S, Tsou C-Y, Chiu S-H, Chen J-C, Wang RY, Lin S-M, Hung W-S, De Guzman M, Hu C-C, Lee K-R (2014) Preparation and characterization of bioplastic-based green renewable composites from tapioca with acetyl tributyl citrate as a plasticizer. Materials 7(8):5617–5632. doi: 10.3390/ma7085617Jing J, Qa Qiao, Jin Y, Ma C, Cai H, Meng Y, Cai Z, Feng D (2012) Molecular and mesoscopic dynamics simulations on the compatibility of PLA/plasticizer blends. Chin J Chem 30(1):133–138. doi: 10.1002/cjoc.201180454Ljungberg N, Wesslen B (2003) Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer 44(25):7679–7688. doi: 10.1016/j.polymer.2003.09.055Notta-Cuvier D, Murariu M, Odent J, Delille R, Bouzouita A, Raquez J-M, Lauro F, Dubois P (2015) Tailoring polylactide properties for automotive applications: effects of co-addition of halloysite Nanotubes and selected plasticizer. Macromol Mater Eng 300(7):684–698. doi: 10.1002/mame.201500032Carbonell-Verdu A, Bernardi L, Garcia-Garcia D, Sanchez-Nacher L, Balart R (2015) Development of environmentally friendly composite matrices from epoxidized cottonseed oil. Eur Polymer J 63:1–10. doi: 10.1016/j.eurpolymj.2014.11.043Samper MD, Fombuena V, Boronat T, Garcia-Sanoguera D, Balart R (2012) Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. J Am Oil Chem Soc 89(8):1521–1528. doi: 10.1007/s11746-012-2041-ySamper MD, Petrucci R, Sanchez-Nacher L, Balart R, Kenny JM (2015) Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Mater Des 72:9–15. doi: 10.1016/j.matdes.2015.02.002Samper MD, Petrucci R, Sanchez-Nacher L, Balart R, Kenny JM (2015) New environmentally friendly composite laminates with epoxidized linseed oil (ELO) and slate fiber fabrics. Compos Part B Eng 71:203–209. doi: 10.1016/j.compositesb.2014.11.034Bueno-Ferrer C, Garrigos MC, Jimenez A (2010) Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polym Degrad Stab 95(11):2207–2212. doi: 10.1016/j.polymdegradstab.2010.01.027Bueno-Ferrer C, Jimenez A, Garrigos MC (2010) Migration analysis of epoxidized soybean oil and other plasticizers in commercial lids for food packaging by gas chromatography-mass spectrometry. Food Addit Contam Part a—Chem Anal Control Expo Risk Assess 27(10):1469–1477. doi: 10.1080/19440049.2010.502129Fenollar O, Garcia-Sanoguera D, Sanchez-Nacher L, Lopez J, Balart R (2010) Effect of the epoxidized linseed oil concentration as natural plasticizer in vinyl plastisols. J Mater Sci 45(16):4406–4413. doi: 10.1007/s10853-010-4520-6Fenollar O, Garcia-Sanoguera D, Sanchez-Nacher L, Lopez J, Balart R (2012) Characterization of the curing process of vinyl plastisols with epoxidized linseed oil as a natural-based plasticizer. J Appl Polym Sci 124(3):2550–2557. doi: 10.1002/app.34645Semsarzadeh MA, Mehrabzadeh M, Arabshahi SS (2005) Mechanical and thermal properties of the plasticized PVC-ESBO. Iran Polym J 14(9):769–773Chieng BW, Ibrahim NA, Then YY, Loo YY (2014) Epoxidized vegetable oils plasticized poly(lactic acid) biocomposites: mechanical, thermal and morphology properties. Molecules 19(10):16024–16038. doi: 10.3390/molecules191016024Prempeh N, Li J, Liu D, Das K, Maiti S, Zhang Y (2014) Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: a comparative study. Polym Sci Ser A 56(6):856–863. doi: 10.1134/s0965545x14060182Santos EF, Oliveira RVB, Reiznautt QB, Samios D, Nachtigall SMB (2014) Sunflower-oil biodiesel-oligoesters/polylactide blends: plasticizing effect and ageing. Polym Test 39:23–29. doi: 10.1016/j.polymertesting.2014.07.010Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48(23):6855–6866. doi: 10.1016/j.polymer.2007.09.020Arrieta MP, Lopez J, Ferrandiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32(4):760–768. doi: 10.1016/j.polymertesting.2013.03.016Arrieta MP, Samper MD, Lopez J, Jimenez A (2014) Combined effect of poly(hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging. J Polym Environ 22(4):460–470. doi: 10.1007/s10924-014-0654-

    Optimización de las propiedades mecánicas del compuesto PLA/PCL para su aplicación como material biocompatible

    Full text link
    El uso actual de materiales para aplicación en biomedicina, concretamente para el sector protésico, está siendo condicionado, en los últimos años, por una serie de requisitos que no cumplen los materiales tradicionales. Éstos deben ser mecánicamente resistentes, rígidos con cierta elasticidad, biodegradables y/o bioabsorbibles por el medio fisiológico. Los composites base polimérica, en concreto las mezclas de PLA/PCL presentan características muy prometedoras para la fabricación de fijaciones de uso en biomedicina. El uso de este tipo de materiales conlleva beneficios tales como evitar segundas intervenciones quirúrgicas para retirar, una vez regenerado el hueso, las fijaciones o tornillos incorporados. El objetivo de este trabajo ha sido caracterizar los composites fabricados, obteniendo las propiedades mecánicas para adaptar éstos materiales a su futura aplicación como fijaciones necesarias en biomedicina para la reparación de roturas óseas.Ferri Azor, JM.; Carbonell Verdú, A.; Montañés Muñoz, N.; Jorda-Vilaplana, A.; Fenollar Gimeno, OÁ. (2014). Optimización de las propiedades mecánicas del compuesto PLA/PCL para su aplicación como material biocompatible. Compobell, S.L. http://hdl.handle.net/10251/70653
    corecore