2,381 research outputs found
On the Topology Maintenance of Dynamic P2P Overlays through Self-Healing Local Interactions
This paper deals with the use of self-organizing protocols to improve the
reliability of dynamic Peer-to-Peer (P2P) overlay networks. We present two
approaches, that employ local knowledge of the 2nd neighborhood of nodes. The
first scheme is a simple protocol requiring interactions among nodes and their
direct neighbors. The second scheme extends this approach by resorting to the
Edge Clustering Coefficient (ECC), a local measure that allows to identify
those edges that connect different clusters in an overlay. A simulation
assessment is presented, which evaluates these protocols over uniform networks,
clustered networks and scale-free networks. Different failure modes are
considered. Results demonstrate the viability of the proposal.Comment: A revised version of the paper appears in Proc. of the IFIP
Networking 2014 Conference, IEEE, Trondheim, (Norway), June 201
On the Modeling of Musical Solos as Complex Networks
Notes in a musical piece are building blocks employed in non-random ways to
create melodies. It is the "interaction" among a limited amount of notes that
allows constructing the variety of musical compositions that have been written
in centuries and within different cultures. Networks are a modeling tool that
is commonly employed to represent a set of entities interacting in some way.
Thus, notes composing a melody can be seen as nodes of a network that are
connected whenever these are played in sequence. The outcome of such a process
results in a directed graph. By using complex network theory, some main metrics
of musical graphs can be measured, which characterize the related musical
pieces. In this paper, we define a framework to represent melodies as networks.
Then, we provide an analysis on a set of guitar solos performed by main
musicians. Results of this study indicate that the presented model can have an
impact on audio and multimedia applications such as music classification,
identification, e-learning, automatic music generation, multimedia
entertainment.Comment: to appear in Information Science, Elsevier. Please cite the paper
including such information. arXiv admin note: text overlap with
arXiv:1603.0497
Self-Healing Protocols for Connectivity Maintenance in Unstructured Overlays
In this paper, we discuss on the use of self-organizing protocols to improve
the reliability of dynamic Peer-to-Peer (P2P) overlay networks. Two similar
approaches are studied, which are based on local knowledge of the nodes' 2nd
neighborhood. The first scheme is a simple protocol requiring interactions
among nodes and their direct neighbors. The second scheme adds a check on the
Edge Clustering Coefficient (ECC), a local measure that allows determining
edges connecting different clusters in the network. The performed simulation
assessment evaluates these protocols over uniform networks, clustered networks
and scale-free networks. Different failure modes are considered. Results
demonstrate the effectiveness of the proposal.Comment: The paper has been accepted to the journal Peer-to-Peer Networking
and Applications. The final publication is available at Springer via
http://dx.doi.org/10.1007/s12083-015-0384-
Clustering of Musical Pieces through Complex Networks: an Assessment over Guitar Solos
Musical pieces can be modeled as complex networks. This fosters innovative
ways to categorize music, paving the way towards novel applications in
multimedia domains, such as music didactics, multimedia entertainment and
digital music generation. Clustering these networks through their main metrics
allows grouping similar musical tracks. To show the viability of the approach,
we provide results on a dataset of guitar solos.Comment: to appear in IEEE Multimedia magazin
LUNES: Agent-based Simulation of P2P Systems (Extended Version)
We present LUNES, an agent-based Large Unstructured NEtwork Simulator, which
allows to simulate complex networks composed of a high number of nodes. LUNES
is modular, since it splits the three phases of network topology creation,
protocol simulation and performance evaluation. This permits to easily
integrate external software tools into the main software architecture. The
simulation of the interaction protocols among network nodes is performed via a
simulation middleware that supports both the sequential and the
parallel/distributed simulation approaches. In the latter case, a specific
mechanism for the communication overhead-reduction is used; this guarantees
high levels of performance and scalability. To demonstrate the efficiency of
LUNES, we test the simulator with gossip protocols executed on top of networks
(representing peer-to-peer overlays), generated with different topologies.
Results demonstrate the effectiveness of the proposed approach.Comment: Proceedings of the International Workshop on Modeling and Simulation
of Peer-to-Peer Architectures and Systems (MOSPAS 2011). As part of the 2011
International Conference on High Performance Computing and Simulation (HPCS
2011
Highly intensive data dissemination in complex networks
This paper presents a study on data dissemination in unstructured
Peer-to-Peer (P2P) network overlays. The absence of a structure in unstructured
overlays eases the network management, at the cost of non-optimal mechanisms to
spread messages in the network. Thus, dissemination schemes must be employed
that allow covering a large portion of the network with a high probability
(e.g.~gossip based approaches). We identify principal metrics, provide a
theoretical model and perform the assessment evaluation using a high
performance simulator that is based on a parallel and distributed architecture.
A main point of this study is that our simulation model considers
implementation technical details, such as the use of caching and Time To Live
(TTL) in message dissemination, that are usually neglected in simulations, due
to the additional overhead they cause. Outcomes confirm that these technical
details have an important influence on the performance of dissemination schemes
and that the studied schemes are quite effective to spread information in P2P
overlay networks, whatever their topology. Moreover, the practical usage of
such dissemination mechanisms requires a fine tuning of many parameters, the
choice between different network topologies and the assessment of behaviors
such as free riding. All this can be done only using efficient simulation tools
to support both the network design phase and, in some cases, at runtime
Mobile Online Gaming via Resource Sharing
Mobile gaming presents a number of main issues which remain open. These are
concerned mainly with connectivity, computational capacities, memory and
battery constraints. In this paper, we discuss the design of a fully
distributed approach for the support of mobile Multiplayer Online Games (MOGs).
In mobile environments, several features might be exploited to enable resource
sharing among multiple devices / game consoles owned by different mobile users.
We show the advantages of trading computing / networking facilities among
mobile players. This operation mode opens a wide number of interesting sharing
scenarios, thus promoting the deployment of novel mobile online games. In
particular, once mobile nodes make their resource available for the community,
it becomes possible to distribute the software modules that compose the game
engine. This allows to distribute the workload for the game advancement
management. We claim that resource sharing is in unison with the idea of ludic
activity that is behind MOGs. Hence, such schemes can be profitably employed in
these contexts.Comment: Proceedings of 3nd ICST/CREATE-NET Workshop on DIstributed SImulation
and Online gaming (DISIO 2012). In conjunction with SIMUTools 2012.
Desenzano, Italy, March 2012. ISBN: 978-1-936968-47-
A Survey on Handover Management in Mobility Architectures
This work presents a comprehensive and structured taxonomy of available
techniques for managing the handover process in mobility architectures.
Representative works from the existing literature have been divided into
appropriate categories, based on their ability to support horizontal handovers,
vertical handovers and multihoming. We describe approaches designed to work on
the current Internet (i.e. IPv4-based networks), as well as those that have
been devised for the "future" Internet (e.g. IPv6-based networks and
extensions). Quantitative measures and qualitative indicators are also
presented and used to evaluate and compare the examined approaches. This
critical review provides some valuable guidelines and suggestions for designing
and developing mobility architectures, including some practical expedients
(e.g. those required in the current Internet environment), aimed to cope with
the presence of NAT/firewalls and to provide support to legacy systems and
several communication protocols working at the application layer
- …