40 research outputs found

    Chapter Leveraging Internet-of-Things to Support Circular Economy Paradigm in Manufacturing Industry

    Get PDF
    Circular economy represents a fundamental alternative to the currently predominating linear economy model, while Industry 4.0 is a technological enabler to bring process innovation in the industrial domain. New economic models are needed in order to reduce material inputs and waste generation leveraging on ecodesign, recycling and reusing of products, new business models, and new technologies. Internet-of-Things and artificial intelligence can support the circular economy paradigm, through the development of a marketplace for connecting buyers and sellers of manufacturing services, raw materials and products toward building global supply chains. The core component of this marketplace is a novel, agent-based, brokering module that will apply both syntactic and semantic matching in terms of manufacturing capabilities, in order to find the best possible supplier to fulfill a request for a service, raw materials or products involved in the supply chain

    Leveraging Internet-of-Things to Support Circular Economy Paradigm in Manufacturing Industry

    Get PDF
    Circular economy represents a fundamental alternative to the currently predominating linear economy model, while Industry 4.0 is a technological enabler to bring process innovation in the industrial domain. New economic models are needed in order to reduce material inputs and waste generation leveraging on ecodesign, recycling and reusing of products, new business models, and new technologies. Internet-of-Things and artificial intelligence can support the circular economy paradigm, through the development of a marketplace for connecting buyers and sellers of manufacturing services, raw materials and products toward building global supply chains. The core component of this marketplace is a novel, agent-based, brokering module that will apply both syntactic and semantic matching in terms of manufacturing capabilities, in order to find the best possible supplier to fulfill a request for a service, raw materials or products involved in the supply chain

    Visible photon generation via four-wave mixing in near-infrared near-zero-index thin films

    Get PDF
    Optical nonlinearities can be strongly enhanced by operating in the so-called near-zero-index (NZI) regime, where the real part of the refractive index of the system under investigation approaches zero. Here we experimentally demonstrate semi-degenerate four-wave mixing (FWM) in aluminum zinc oxide thin films generating radiation tunable in the visible spectral region, where the material is highly transparent. To this end, we employed an intense pump (787 nm) and a seed tunable in the NIR window (1100–1500 nm) to generate a visible idler wave (530–620 nm). Experiments show enhancement of the frequency conversion efficiency with a maximum of 2% and a signal-to-pump detuning of 360 nm. Effective idler wavelength tuning has also been demonstrated by operating on the temporal delay between the pump and signal

    AIRE polymorphism, melanoma antigen-specific T cell immunity, and susceptibility to melanoma

    Get PDF
    AIRE is involved in susceptibility to melanoma perhaps regulating T cell immunity against melanoma antigens (MA). To address this issue, AIRE and MAGEB2 expressions were measured by real time PCR in medullary thymic epithelial cells (mTECs) from two strains of C57BL/6 mice bearing either T or C allelic variant of the rs1800522 AIRE SNP. Moreover, the extent of apoptosis induced by mTECs in MAGEB2-specific T cells and the susceptibility to in vivo melanoma B16F10 cell challenge were compared in the two mouse strains. The C allelic variant, protective in humans against melanoma, induced lower AIRE and MAGEB2 expression in C57BL/6 mouse mTECs than the T allele. Moreover, mTECs expressing the C allelic variant induced lower extent of apoptosis in MAGEB2-specific syngeneic T cells than mTECs bearing the T allelic variant (p < 0.05). Vaccination against MAGEB2 induced higher frequency of MAGEB2-specific CTL and exerted higher protective effect against melanoma development in mice bearing the CC AIRE genotype than in those bearing the TT one (p < 0.05). These findings show that allelic variants of one AIRE SNP may differentially shape the MA-specific T cell repertoire potentially influencing susceptibility to melanoma

    In-Vehicle IoT Platform Enabling the Virtual Sensor Concept: A Pothole Detection Use-case for Cooperative Safety

    No full text
    Nowadays the number of on-board sensors increases continuously due to their benefits in many different areas, such us driving efficiency, maintenance, autonomous driving, etc. Usually the vehicle itself and its users are those which take direct advantage from these benefits. By leveraging Internet-of-Things (IoT) technologies, it is possible to abstract data and functionalities provided by on-board sensors and actuators exposing relevant services outside the vehicle to external cloud-based applications and other vehicles. With these technologies the vehicle is thus transformed in an IoT object which can be part of external IoT platforms. This work focuses on the design and implementation of an in-vehicle IoT platform which exposes internal functionalities as IoT services enabling also the concept of “Virtual Sensor”, which leverages sensor fusion techniques to provide enhanced services combining raw data coming from on-board devices. This IoT platform solution is validated through a use case in which virtual real-time pothole detection sensor is implemented to evaluate the road surface conditions. In such use-case, multi-source sensing information - coming from 6LoWPAN sensors as well as Smartphones and Inertial Measurement Units - is fused, enabling IoT applications such as cooperative safety and early road maintenance
    corecore