25,568 research outputs found

    Is it really possible to grow isotropic on-lattice diffusion-limited aggregates?

    Full text link
    In a recent paper (Bogoyavlenskiy V A 2002 \JPA \textbf{35} 2533), an algorithm aiming to generate isotropic clusters of the on-lattice diffusion-limited aggregation (DLA) model was proposed. The procedure consists of aggregation probabilities proportional to the squared number of occupied sites (k2k^2). In the present work, we analyzed this algorithm using the noise reduced version of the DLA model and large scale simulations. In the noiseless limit, instead of isotropic patterns, a 45∘45^\circ (30∘30^\circ) rotation in the anisotropy directions of the clusters grown on square (triangular) lattices was observed. A generalized algorithm, in which the aggregation probability is proportional to kνk^\nu, was proposed. The exponent ν\nu has a nonuniversal critical value νc\nu_c, for which the patterns generated in the noiseless limit exhibit the original (axial) anisotropy for ν<νc\nu<\nu_c and the rotated one (diagonal) for ν>νc\nu>\nu_c. The values νc=1.395±0.005\nu_c = 1.395\pm0.005 and νc=0.82±0.01\nu_c = 0.82\pm 0.01 were found for square and triangular lattices, respectively. Moreover, large scale simulations show that there are a nontrivial relation between noise reduction and anisotropy direction. The case ν=2\nu=2 (\bogo's rule) is an example where the patterns exhibit the axial anisotropy for small and the diagonal one for large noise reduction.Comment: 12 pages, 8 figure

    Spherical Scalar Field Halo in Galaxies

    Get PDF
    We study a spherically symmetric fluctuation of scalar dark matter in the cosmos and show that it could be the dark matter in galaxies, provided that the scalar field has an exponential potential whose overall sign is negative and whose exponent is constrained observationally by the rotation velocities of galaxies. The local space-time of the fluctuation contains a three dimensional space-like hypersurface with surplus of angle.Comment: 5 REVTeX pages, no figures. Contains important suggestions provided by the referee. Final version, to appear in Phys. Rev.

    Absorption lines from magnetically-driven winds in X-ray binaries

    Full text link
    High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio (ε\varepsilon) and (b) the ejection efficiency (pp). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter (ξ\xi), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of pp (≳0.1\gtrsim 0.1, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of ξ\xi is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.Comment: 16 Pages, 10 figures in the main body and 4 figures in the appendix. Accepted for publication in A&

    Hydrogen-enhanced local plasticity in aluminum: an ab initio study

    Full text link
    Dislocation core properties of Al with and without H impurities are studied using the Peierls-Nabarro model with parameters determined by ab initio calculations. We find that H not only facilitates dislocation emission from the crack tip but also enhances dislocation mobility dramatically, leading to macroscopically softening and thinning of the material ahead of the crack tip. We observe strong binding between H and dislocation cores, with the binding energy depending on dislocation character. This dependence can directly affect the mechanical properties of Al by inhibiting dislocation cross-slip and developing slip planarity.Comment: 4 pages, 3 figure

    Two-component mixture of charged particles confined in a channel: melting

    Full text link
    The melting of a binary system of charged particles confined in a {\it quasi}-one-dimensional parabolic channel is studied through Monte Carlo simulations. At zero temperature the particles are ordered in parallel chains. The melting is anisotropic and different melting temperatures are obtained according to the spatial direction, and the different types of particles present in the system. Melting is very different for the single-, two- and four-chain configurations. A temperature induced structural phase transition is found between two different four chain ordered states which is absent in the mono-disperse system. In the mixed regime, where the two types of particles are only slightly different, melting is almost isotropic and a thermally induced homogeneous distribution of the distinct types of charges is observed.Comment: To appear in Journal of Physics: condensed matter ; (13 pages, 12 figures
    • …
    corecore