15 research outputs found

    Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome.</p> <p>Methods</p> <p>Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed.</p> <p>Results</p> <p>Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson).</p> <p>Conclusions</p> <p>The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.</p

    Mismatch repair genes in Lynch syndrome: a review

    No full text
    Lynch syndrome represents 1-7% of all cases of colorectal cancer and is an autosomal-dominant inherited cancer predisposition syndrome caused by germline mutations in deoxyribonucleic acid (DNA) mismatch repair genes. Since the discovery of the major human genes with DNA mismatch repair function, mutations in five of them have been correlated with susceptibility to Lynch syndrome: mutS homolog 2 (MSH2); mutL homolog 1 (MLH1); mutS homolog 6 (MSH6); postmeiotic segregation increased 2 (PMS2); and postmeiotic segregation increased 1 (PMS1). It has been proposed that one additional mismatch repair gene, mutL homolog 3 (MLH3), also plays a role in Lynch syndrome predisposition, but the clinical significance of mutations in this gene is less clear. According to the InSiGHT database (International Society for Gastrointestinal Hereditary Tumors), approximately 500 different LS-associated mismatch repair gene mutations are known, primarily involving MLH1 (50%) and MSH2 (40%), while others account for 10%. Much progress has been made in understanding the molecular basis of Lynch Syndrome. Molecular characterization will be the most accurate way of defining Lynch syndrome and will provide predictive information of greater accuracy regarding the risks of colon and extracolonic cancer and enable optimal cancer surveillance regimens

    Evaluation of MLH1 I219V Polymorphism in Unrelated South American Individuals Suspected of Having Lynch Syndrome.

    No full text
    Some single-nucleotide polymorphisms are associated with higher risk of colorectal cancer development and are suggested to explain part of the genetic contribution to Lynch syndrome. Aim: To evaluate the mutL homolog 1 (MLH1) I219V polymorphism in 124 unrelated South American individuals suspected of having Lynch syndrome, based on frequency, association with pathogenic MLH1 and mutS homolog 2 (MSH2) mutation and clinical features

    Characterization of germline mutations of MLH1 and MSH2 in unrelated south American suspected Lynch syndrome individuals

    No full text
    Lynch syndrome (LS) is an autosomal dominant syndrome that predisposes individuals to development of cancers early in life. These cancers are mainly the following: colorectal, endometrial, ovarian, small intestine, stomach and urinary tract cancers. LS is caused by germline mutations in DNA mismatch repair genes (MMR), mostly MLH1 and MSH2, which are responsible for more than 85% of known germline mutations. To search for germline mutations in MLH1 and MSH2 genes in 123 unrelated South American suspected LS patients (Bethesda or Amsterdam Criteria) DNA was obtained from peripheral blood, and PCR was performed followed by direct sequencing in both directions of all exons and intron-exon junctions regions of the MLH1 and MSH2 genes. MLH1 or MSH2 pathogenic mutations were found in 28.45% (34/123) of the individuals, where 25/57 (43.85%) fulfilled Amsterdam I, II and 9/66 (13.63%) the Bethesda criteria. The mutations found in both genes were as follows: nonsense (35.3%), frameshift (26.47%), splicing (23.52%), and missense (9%). Thirteen alterations (35.14%) were described for the first time. The data reported in this study add new information about MLH1 and MSH2 gene mutations and contribute to better characterize LS in Brazil, Uruguay and Argentina. The high rate of novel mutations demonstrates the importance of defining MLH1 and MSH2 mutations in distinct LS populations
    corecore