77 research outputs found

    General CPT-even dimension-five nonminimal couplings between fermions and photons yielding EDM and MDM

    Get PDF
    In this letter, we examine a new class of CPT-even nonminimal interactions, between fermions and photons, deprived of higher order derivatives, that yields electric dipole moment (EDM) and magnetic dipole moment (MDM) in the context of the Dirac equation. The couplings are dimension-five CPT-even and Lorentz-violating nonminimal structures, composed of a rank-2 tensor, TμνT_{\mu\nu}, the electromagnetic tensor, and gamma matrices, being addressed in its axial and non-axial Hermitian versions, and also comprising general possibilities. We then use the electron's anomalous magnetic dipole moment and electron electric dipole moment measurements to reach upper bounds of 11 part in 102010^{20} and 102510^{25} (eV )−1^{-1}

    Influence of Lorentz-violating terms on a two-level system

    Full text link
    The influence of Lorentz- and CPT-violating terms of the extended Standard Model on a semi-classical two-level system is analyzed. It is shown that the Lorentz-violating background (when coupled with the fermion sector in a vector way) is able to induce modifications on the Rabi oscillation pattern, promoting sensitive modulations on the usual oscillations. As for the term involving the coefficient coupled in an axial vector way, it brings about oscillations both on energy states and on the spin states (implied by the background). It is also seen that such backgrounds are able to yield state oscillations even in the absence of the electromagnetic field. The foreseen effects are used to establish upper bounds on the Lorentz-violating coefficients.Comment: 13 pages, 6 figures, revtex style
    • …
    corecore