28 research outputs found

    Plasma biomarkers identify older adults at risk of Alzheimer's disease and related dementias in a real-world population-based cohort

    Get PDF
    Introduction: Plasma biomarkers—cost effective, non-invasive indicators of Alzheimer's disease (AD) and related disorders (ADRD)—have largely been studied in clinical research settings. Here, we examined plasma biomarker profiles and their associated factors in a population-based cohort to determine whether they could identify an at-risk group, independently of brain and cerebrospinal fluid biomarkers. Methods: We measured plasma phosphorylated tau181 (p-tau181), neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and amyloid beta (Aβ)42/40 ratio in 847 participants from a population-based cohort in southwestern Pennsylvania. Results: K-medoids clustering identified two distinct plasma Aβ42/40 modes, further categorizable into three biomarker profile groups: normal, uncertain, and abnormal. In different groups, plasma p-tau181, NfL, and GFAP were inversely correlated with Aβ42/40, Clinical Dementia Rating, and memory composite score, with the strongest associations in the abnormal group. Discussion: Abnormal plasma Aβ42/40 ratio identified older adult groups with lower memory scores, higher dementia risks, and higher ADRD biomarker levels, with potential implications for population screening. Highlights: Population-based plasma biomarker studies are lacking, particularly in cohorts without cerebrospinal fluid or neuroimaging data. In the Monongahela-Youghiogheny Healthy Aging Team study (n = 847), plasma biomarkers associated with worse memory and Clinical Dementia Rating (CDR), apolipoprotein E ε4, and greater age. Plasma amyloid beta (Aβ)42/40 ratio levels allowed clustering participants into abnormal, uncertain, and normal groups. Plasma Aβ42/40 correlated differently with neurofilament light chain, glial fibrillary acidic protein, phosphorylated tau181, memory composite, and CDR in each group. Plasma biomarkers can enable relatively affordable and non-invasive community screening for evidence of Alzheimer's disease and related disorders pathophysiology

    Comparing tau status determined via plasma pTau181, pTau231 and [¹⁸F]MK6240 tau-PET

    Get PDF
    Background: Tau in Alzheimer's disease (AD) is assessed via cerebrospinal fluid (CSF) and Positron emission tomography (PET). Novel methods to detect phosphorylated tau (pTau) in blood have been recently developed. We aim to investigate agreement of tau status as determined by [18F]MK6240 tau-PET, plasma pTau181 and pTau231. / Methods: We assessed cognitively unimpaired young, cognitively unimpaired, mild cognitive impairment and AD individuals with [18F]MK6240, plasma pTau181, pTau 231, [18F]AZD4694 amyloid-PET and MRI. A subset underwent CSF assessment. We conducted ROC curves to obtain cut-off values for plasma pTau epitopes. Individuals were categorized as positive or negative in all biomarkers. We then compared the distribution among concordant and discordant groups in relation to diagnosis, Aβ status, APOEε4 status, [18F]AZD4694 global SUVR, hippocampal volume and CSF pTau181. / Findings: The threshold for positivity was 15.085 pg/mL for plasma pTau181 and 17.652 pg/mL for plasma pTau231. Most individuals had concordant statuses, however, 18% of plasma181/PET, 26% of plasma231/PET and 25% of the pTau231/pTau181 were discordant. Positivity to at least one biomarker was often accompanied by diagnosis of cognitive impairment, Aβ positivity, APOEε4 carriership, higher levels of [18F]AZD4694 global SUVR, hippocampal atrophy and CSF pTau181. / Interpretation: Plasma pTau181, pTau231 and [18F]MK6240 seem to reflect different stages of tau progression. Plasma biomarkers can be useful in the context of diagnostic information and clinical trials, to evaluate the disease stage. Moreover, they seem to confidently evaluate tau-PET positivity. / Funding: Moreover, this study was supported by Weston Brain Institute, Canadian Institute of Health Research and Fonds de Recherche du Québec

    APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles

    Get PDF
    Animal studies suggest that the apolipoprotein E ε4 (APOEε4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOEε4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomography for amyloid-β (Aβ; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOEε4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for Aβ and tau deposition. Furthermore, microglial activation mediated the Aβ-independent effects of APOEε4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOEε4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOEε4 genotype exerts Aβ-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition

    Chemical constituents from Kielmeyera rugosa Choisy (Clusiaceae)

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)3612921924Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FINEPCOPES/UFSConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Hippocampal GFAP-positive astrocyte responses to amyloid and tau pathologies

    No full text
    Introduction: In Alzheimer's disease clinical research, glial fibrillary acidic protein (GFAP) released/leaked into the cerebrospinal fluid and blood is widely measured and perceived as a biomarker of reactive astrogliosis. However, it was demonstrated that GFAP levels differ in individuals presenting with amyloid-β (Aβ) or tau pathologies. The molecular underpinnings behind this specificity are little explored. Here we investigated biomarker and transcriptomic associations of hippocampal GFAP-positive astrocytes with Aβ and tau pathologies in humans and mouse models. / Methods: We studied 90 individuals with plasma GFAP, Aβ- and Tau-PET to investigate the association between biomarkers. Then, transcriptomic analysis in hippocampal GFAP-positive astrocytes isolated from mouse models presenting Aβ (PS2APP) or tau (P301S) pathologies was conducted to explore differentially expressed genes (DEGs), Gene Ontology terms, and protein–protein interaction networks associated with each phenotype. / Results: In humans, we found that plasma GFAP associates with Aβ but not tau pathology. Unveiling the unique nature of hippocampal GFAP-positive astrocytic responses to Aβ or tau pathologies, mouse transcriptomics showed scarce overlap of DEGs between the Aβ. and tau mouse models. While Aβ GFAP-positive astrocytes were overrepresented with DEGs associated with proteostasis and exocytosis-related processes, tau hippocampal GFAP-positive astrocytes presented greater abnormalities in functions related to DNA/RNA processing and cytoskeleton dynamics. / Conclusion: Our results offer insights into Aβ- and tau-driven specific signatures in hippocampal GFAP-positive astrocytes. Characterizing how different underlying pathologies distinctly influence astrocyte responses is critical for the biological interpretation of astrocyte biomarkers and suggests the need to develop context-specific astrocyte targets to study AD. / Funding: This study was supported by Instituto Serrapilheira, Alzheimer's Association, CAPES, CNPq and FAPERGS
    corecore