4 research outputs found

    Properties of whey protein-based films containing organic acids and nisin to control Listeria monocytogenes

    Get PDF
    Whey protein isolate and glycerol were mixed to form a matrix to incorporate antimicrobial agents and produce edible films with antimicrobial activity against Listeria monocytogenes strains isolated from cheeses. Various organic acids were used to decrease pH down to approximately 3. In a preliminary assay without nisin, the effect of each organic acid was evaluated with respect to the rheological properties of the film solutions and the inhibitory and mechanical properties of the films. Lactic, malic, and citric acids (3%, wt/vol), which were used in a subsequent study of their combined inhibitory effect with nisin (50 IU/ml), had significantly higher antilisterial activity (P , 0.05) compared with the control (2 N HCl, 3% [wt/vol], with nisin). The largest mean zone of inhibition was 4.00 6 0.92 mm for malic acid with nisin. Under small-amplitude oscillatory stress, the proteinglycerol- acid film solutions exhibited a predominantly viscous behavior or a weak gel behavior, with the storage modulus (G9) slightly higher than the loss modulus (G0). The malic acid–based solution was the only one whose viscosity was not influenced by the addition of nisin. The addition of nisin resulted in a nonsignificant (P . 0.05) increase in the percentage of elongation at break. Results from tensile and puncture stress were variable, but in general no significant differences were found after the incorporation of nisin. The overall results support the use of malic acid with nisin to produce effective antimicrobial films to control L. monocytogenes growth

    Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin

    Get PDF
    The inhibitory effects of nisin, natamycin and malic acid, incorporated in whey protein films with pH 3, were investigated alone or with addition of sucrose esters, Tween80 or EDTA. Water vapour permeability measurements and mechanical and rheological tests were also assessed. EDTA and Tween80 did not sig- nificantly (P < 0.05) influence the inhibitory activity of films against Pseudomonas aeruginosa and Yarrow- ia lipolytica in contrast with the improved effect against Listeria monocytogenes, Penicillium commune and Penicillium chrysogenum. Sucrose esters reduced significantly (P < 0.05) the inhibitory effect for Y. lipoly- tica and Penicillium spp. The present work provides an antimicrobial film formulation with potential to be a hurdle against spoilage and pathogenic microorganisms isolated from cheese surface

    Preliminary study on the effect of fermented cheese whey on Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Goldcoast populations inoculated onto fresh organic lettuce

    Get PDF
    Cheese whey fermented by an industrial starter consortium of lactic acid bacteria was evaluated for its antibacterial capacity to control a selection of pathogenic bacteria. For their relevance on outbreak reports related to vegetable consumption, this selection included Listeria monocytogenes, serotype 4b, Escherichia coli O157:H7, and Salmonella Goldcoast. Organically grown lettuce was inoculated with an inoculum level of *107 colonyforming unit (CFU)/mL and was left for about 1 h in a safety cabinet before washing with a perceptual solution of 75:25 (v/v) fermented whey in water, for 1 and 10 min. Cells of pathogens recovered were then counted and their number compared with that obtained for a similar treatment, but using a chlorine solution at 110 ppm. Results show that both treatments, either with chlorine or fermented whey, were able to significantly reduce ( p < 0.05) the number of bacteria, in a range of 1.15–2.00 and 1.59–2.34 CFU/g, respectively, regarding the bacteria tested. Results suggest that the use of fermented whey may be as effective as the solution of chlorine used in industrial processes in reducing the pathogens under study (best efficacy shown for Salmonella), with the advantage of avoiding health risks arising from the formation of carcinogenic toxic chlorine derinfo:eu-repo/semantics/publishedVersio
    corecore