114 research outputs found

    Antigen B from Echinococcus granulosus enters mammalian cells by endocytic pathways

    Get PDF
    Background Cystic hydatid disease is a zoonosis caused by the larval stage (hydatid) of Echinococcus granulosus (Cestoda, Taeniidae). The hydatid develops in the viscera of intermediate host as a unilocular structure filled by the hydatid fluid, which contains parasitic excretory/secretory products. The lipoprotein Antigen B (AgB) is the major component of E. granulosus metacestode hydatid fluid. Functionally, AgB has been implicated in immunomodulation and lipid transport. However, the mechanisms underlying AgB functions are not completely known. Methodology/Principal findings In this study, we investigated AgB interactions with different mammalian cell types and the pathways involved in its internalization. AgB uptake was observed in four different cell lines, NIH-3T3, A549, J774 and RH. Inhibition of caveolae/raft-mediated endocytosis causes about 50 and 69% decrease in AgB internalization by RH and A549 cells, respectively. Interestingly, AgB colocalized with the raft endocytic marker, but also showed a partial colocalization with the clathrin endocytic marker. Finally, AgB colocalized with an endolysosomal tracker, providing evidence for a possible AgB destination after endocytosis. Conclusions/Significance The results indicate that caveolae/raft-mediated endocytosis is the main route to AgB internalization, and that a clathrin-mediated entry may also occur at a lower frequency. A possible fate for AgB after endocytosis seems to be the endolysosomal system. Cellular internalization and further access to subcellular compartments could be a requirement for AgB functions as a lipid carrier and/or immunomodulatory molecule, contributing to create a more permissive microenvironment to metacestode development and survival

    Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus

    Get PDF
    Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite’s persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H₂O₂) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H₂O₂ exposure. Using proteomics, we identified 550 unique proteins; including 474 in H₂O₂-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H₂O₂ exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD

    First description of Echinococcus ortleppi and cystic echinococcosis infection status in Chile

    Get PDF
    Cystic echinococcosis (CE), a parasitic disease caused by the cestode Echinococcus granulosus sensu lato (s.l.), is a worldwide zoonotic infection. Although endemic in Chile, information on the molecular characteristics of CE in livestock remains scarce. Therefore we aimed to describe the status of infection with E. granulosus s.l. in cattle from central Chile and also to contribute to the study of the molecular epidemiology of this parasite. According to our results, the prevalence of CE is 18.84% in cattle, similar to previous reports from Chile, suggesting that the prevalence in Santiago Metropolitan area has not changed in the last 30 years. Most of the cysts were found only in lungs (51%), followed by concurrent infection in liver and lungs (30%), and only liver (19%). Molecular characterization of the genetic diversity and population structure of E. granulosus s.l. from cattle in central Chile was performed using a section of the cytochrome c oxidase subunit 1 (cox1) mitochondrial gene. E. granulosus sensu stricto (s.s.) (G1-G3 genotypes) was confirmed by RFLP-PCR to be the dominant species affecting cattle (284 samples/290 samples); we also report for the first time in Chile the presence of E. ortleppi (G5 genotype) (2 samples/61 samples). The Chilean E. granulosus s.s. parsimony network displayed 1 main haplotype. Additional studies using isolates from many locations across Chile and different intermediate hosts will provide more data on the molecular structure of E. granulosus s.s. within this region. Likewise, investigations of the importance of E. ortleppi in human infection in Chile deserve future attention

    Cestode strobilation: prediction of developmental genes and pathways

    Get PDF
    Background: Cestoda is a class of endoparasitic worms in the flatworm phylum (Platyhelminthes). During the course of their evolution cestodes have evolved some interesting aspects, such as their increased reproductive capacity. In this sense, they have serial repetition of their reproductive organs in the adult stage, which is often associated with external segmentation in a developmental process called strobilation. However, the molecular basis of strobilation is poorly understood. To assess this issue, an evolutionary comparative study among strobilated and non-strobilated flatworm species was conducted to identify genes and proteins related to the strobilation process. Results: We compared the genomic content of 10 parasitic platyhelminth species; five from cestode species, representing strobilated parasitic platyhelminths, and five from trematode species, representing non-strobilated parasitic platyhelminths. This dataset was used to identify 1813 genes with orthologues that are present in all cestode (strobilated) species, but absent from at least one trematode (non-strobilated) species. Development- related genes, along with genes of unknown function (UF), were then selected based on their transcriptional profiles, resulting in a total of 34 genes that were differentially expressed between the larval (pre-strobilation) and adult (strobilated) stages in at least one cestode species. These 34 genes were then assumed to be strobilation related; they included 12 encoding proteins of known function, with 6 related to the Wnt, TGF-β/BMP, or G-protein coupled receptor signaling pathways; and 22 encoding UF proteins. In order to assign function to at least some of the UF genes/proteins, a global gene co-expression analysis was performed for the cestode species Echinococcus multilocularis. This resulted in eight UF genes/proteins being predicted as related to developmental, reproductive, vesicle transport, or signaling processes. Conclusions: Overall, the described in silico data provided evidence of the involvement of 34 genes/proteins and at least 3 developmental pathways in the cestode strobilation process. These results highlight on the molecular mechanisms and evolution of the cestode strobilation process, and point to several interesting proteins as potential developmental markers and/or targets for the development of novel antihelminthic drugs

    New insights of the local immune response against both fertile and infertile hydatid cysts

    Get PDF
    Background Cystic echinococcosis is caused by the metacestode of the zoonotic flatworm Echinococcus granulosus. Within the viscera of the intermediate host, the metacestode grows as a unilocular cyst known as hydatid cyst. This cyst is comprised of two layers of parasite origin: germinal and laminated layers, and one of host origin: the adventitial layer, that encapsulates the parasite. This adventitial layer is composed of collagen fibers, epithelioid cells, eosinophils and lymphocytes. To establish itself inside the host, the germinal layer produces the laminated layer, and to continue its life cycle, generates protoscoleces. Some cysts are unable to produce protoscoleces, and are defined as infertile cysts. The molecular mechanisms involved in cyst fertility are not clear, however, the host immune response could play a crucial role. Methodology/Principal findings We collected hydatid cysts from both liver and lungs of slaughtered cattle, and histological sections of fertile, infertile and small hydatid cysts were stained with haematoxylin-eosin. A common feature observed in infertile cysts was the disorganization of the laminated layer by the infiltration of host immune cells. These infiltrating cells eventually destroy parts of laminated layer. Immunohistochemical analysis of both parasite and host antigens, identify these cells as cattle macrophages and are present inside the cysts associated to germinal layer. Conclusions/Significance This is the first report that indicates to cell from immune system present in adventitial layer of infertile bovine hydatid cysts could disrupt the laminated layer, infiltrating and probably causing the infertility of cyst
    • …
    corecore