246 research outputs found

    Estimating flooded area and mean water level using active and passive microwaves: the example of Paraná River Delta floodplain

    Get PDF
    This paper describes a procedure to estimate both the fraction of flooded area and the mean water level in vegetated river floodplains by using a synergy of active and passive microwave signatures. In particular, C band Envisat ASAR in Wide Swath mode and AMSR-E at X, Ku and Ka band, are used. The method, which is an extension of previously developed algorithms based on passive data, exploits also model simulations of vegetation emissivity. The procedure is applied to a long flood event which occurred in the Paraná River Delta from December 2009 to April 2010. Obtained results are consistent with in situ measurements of river water level

    Spinal vascular lesions: anatomy, imaging techniques and treatment

    Get PDF
    Vascular lesions of the spinal cord are rare but potentially devastating conditions whose accurate recognition critically determines the clinical outcome. Several conditions lead to myelopathy due to either arterial ischemia, venous congestion or bleeding within the cord. The clinical presentation varies, according with the different aetiology and mechanism of damage

    Behavior of multitemporal and multisensor passive microwave indices in Southern Hemisphere ecosystems

    Get PDF
    ©2014. American Geophysical Union. All Rights Reserved. This study focused on the time series analysis of passive microwave and optical satellite data collected from six Southern Hemisphere ecosystems in Australia and Argentina. The selected ecosystems represent a wide range of land cover types, including deciduous open forest, temperate forest, tropical and semiarid savannas, and grasslands. We used two microwave indices, the frequency index (FI) and polarization index (PI), to assess the relative contributions of soil and vegetation properties (moisture and structure) to the observations. Optical-based satellite vegetation products from the Moderate Resolution Imaging Spectroradiometer were also included to aid in the analysis. We studied the X and Ka bands of the Advanced Microwave Scanning Radiometer-EOS and Wind Satellite, resulting in up to four observations per day (1:30, 6:00, 13:30, and 18:00-h). Both the seasonal and hourly variations of each of the indices were examined. Environmental drivers (precipitation and temperature) and eddy covariance measurements (gross ecosystem productivity and latent energy) were also analyzed. It was found that in moderately dense forests, FI was dependent on canopy properties (leaf area index and vegetation moisture). In tropical woody savannas, a significant regression (R2) was found between FI and PI with precipitation (R2->-0.5) and soil moisture (R2->-0.6). In the areas of semiarid savanna and grassland ecosystems, FI variations found to be significantly related to soil moisture (R2->-0.7) and evapotranspiration (R2->-0.5), while PI varied with vegetation phenology. Significant differences (p-<-0.01) were found among FI values calculated at the four local times. Key Points Passive microwave indices can be used to estimate vegetation moisture Microwave observations were supported by flux data Passive microwave indices could be used to estimate evapotranspiratio

    Handling the Background in IXPE Polarimetric Data

    Get PDF
    Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer mission by NASA and Agenzia Spaziale Italiana, launched on 2021 December 9, dedicated to investigating X-ray polarimetry allowing angular-, time-, and energy-resolved observations in the 2-8 keV energy band. IXPE is in the science observation phase since 2022 January; it is comprised of three identical telescopes with grazing-incidence mirrors, each one having in the focal plane a gas pixel detector. In this paper, we present a possible guideline to obtain an optimal background selection in polarimetric analysis, and a rejection strategy to remove instrumental background. This work is based on the analysis of IXPE observations, aiming to improve as much as possible the polarimetric sensitivity. In particular, the developed strategies have been applied as a case study to the IXPE observation of the 4U 0142+61 magnetar

    Design, construction, and test of the Gas Pixel Detectors for the IXPE mission

    Get PDF
    Due to be launched in late 2021, the Imaging X-Ray Polarimetry Explorer (IXPE) is a NASA Small Explorer mission designed to perform polarization measurements in the 2-8 keV band, complemented with imaging, spectroscopy and timing capabilities. At the heart of the focal plane is a set of three polarization-sensitive Gas Pixel Detectors (GPD), each based on a custom ASIC acting as a charge-collecting anode. In this paper we shall review the design, manufacturing, and test of the IXPE focal-plane detectors, with particular emphasis on the connection between the science drivers, the performance metrics and the operational aspects. We shall present a thorough characterization of the GPDs in terms of effective noise, trigger efficiency, dead time, uniformity of response, and spectral and polarimetric performance. In addition, we shall discuss in detail a number of instrumental effects that are relevant for high-level science analysis -- particularly as far as the response to unpolarized radiation and the stability in time are concerned.Comment: To be published in Astroparticle Physic

    Accretion geometry of the neutron star low mass X-ray binary Cyg X-2 from X-ray polarization measurements

    Full text link
    We report spectro-polarimetric results of an observational campaign of the bright neutron star low-mass X-ray binary Cyg X-2 simultaneously observed by IXPE, NICER and INTEGRAL. Consistently with previous results, the broad-band spectrum is characterized by a lower-energy component, attributed to the accretion disc with kTinkT_{\rm in} \approx 1 keV, plus unsaturated Comptonization in thermal plasma with temperature kTe=3kT_{\rm e} = 3 keV and optical depth τ4\tau \approx 4, assuming a slab geometry. We measure the polarization degree in the 2-8 keV band P=1.8±0.3P=1.8 \pm 0.3 per cent and polarization angle ϕ=140±4\phi = 140^{\circ} \pm 4^{\circ}, consistent with the previous X-ray polarimetric measurements by OSO-8 as well as with the direction of the radio jet which was earlier observed from the source. While polarization of the disc spectral component is poorly constrained with the IXPE data, the Comptonized emission has a polarization degree P=4.0±0.7P =4.0 \pm 0.7 per cent and a polarization angle aligned with the radio jet. Our results strongly favour a spreading layer at the neutron star surface as the main source of the polarization signal. However, we cannot exclude a significant contribution from reflection off the accretion disc, as indicated by the presence of the iron fluorescence line.Comment: 10 pages, 7 figures, accepted for publication in MNRA

    Uncovering the geometry of the hot X-ray corona in the Seyfert galaxy NGC 4151 with IXPE

    Get PDF
    We present an X-ray spectropolarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM–Newton (50 ks) and NuSTAR (100 ks) pointings. A polarization degree Π = 4.9 ± 1.1 per cent and angle Ψ = 86° ± 7° east of north (68 per cent confidence level) are measured in the 2–8 keV energy range. The spectropolarimetric analysis shows that the polarization could be entirely due to reflection. Given the low reflection flux in the IXPE band, this requires, however, a reflection with a very large (&amp;gt;38 per cent) polarization degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∼4 to ∼8 per cent is found. The observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry, possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first active galactic nucleus with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling its geometry

    The X-ray polarization of the Seyfert 1 galaxy IC 4329A

    Get PDF
    We present an X-ray spectro-polarimetric analysis of the bright Seyfert galaxy IC 4329A. The Imaging X-ray Polarimetry Explorer (IXPE) observed the source for ∼500 ks, supported by XMM–Newton (∼60 ks) and NuSTAR (∼80 ks) exposures. We detect polarization in the 2–8 keV band with 2.97σ confidence. We report a polarization degree of 3.3 ± 1.1 per cent and a polarization angle of 78° ± 10° (errors are 1σ confidence). The X-ray polarization is consistent with being aligned with the radio jet, albeit partially due to large uncertainties on the radio position angle. We jointly fit the spectra from the three observatories to constrain the presence of a relativistic reflection component. From this, we obtain constraints on the inclination angle to the inner disc (&amp;lt;39° at 99 per cent confidence) and the disc inner radius (&amp;lt;11 gravitational radii at 99 per cent confidence), although we note that modelling systematics in practice add to the quoted statistical error. Our spectropolarimetric modelling indicates that the 2–8 keV polarization is consistent with being dominated by emission directly observed from the X-ray corona, but the polarization of the reflection component is completely unconstrained. Our constraints on viewer inclination and polarization degree tentatively favour more asymmetric, possibly out-flowing, coronal geometries that produce more highly polarized emission, but the coronal geometry is unconstrained at the 3σ level

    The geometry of the hot corona in MCG-05-23-16 constrained by X-ray polarimetry

    Get PDF
    We report on the second observation of the radio-quiet active galactic nucleus MCG-05-23-16 performed with the Imaging X-ray Polarimetry Explorer (IXPE). The observation started on 2022 November 6 for a net observing time of 640 ks, and was partly simultaneous with NuSTAR (86 ks). After combining these data with those obtained in the first IXPE pointing on 2022 May (simultaneous with XMM–Newton and NuSTAR) we find a 2–8 keV polarization degree Π = 1.6 ± 0.7 (at 68 per cent confidence level), which corresponds to an upper limit Π = 3.2 per cent (at 99 per cent confidence level). We then compare the polarization results with Monte Carlo simulations obtained with the monk code, with which different coronal geometries have been explored (spherical lamppost, conical, slab, and wedge). Furthermore, the allowed range of inclination angles is found for each geometry. If the best-fitting inclination value from a spectroscopic analysis is considered, a cone-shaped corona along the disc axis is disfavoured

    Discovery of a variable energy-dependent X-ray polarization in the accreting neutron star GX 5-1

    Get PDF
    We report on the coordinated observations of the neutron star low-mass X-ray binary (NS-LMXB) GX 5−1 in X-rays (IXPE, NICER, NuSTAR, and INTEGRAL), optical (REM and LCO), near-infrared (REM), mid-infrared (VLT VISIR), and radio (ATCA). This Z-source was observed by IXPE twice in March-April 2023 (Obs. 1 and 2). In the radio band the source was detected, but only upper limits to the linear polarization were obtained at a 3σ level of 6.1% at 5.5 GHz and 5.9% at 9 GHz in Obs. 1 and 12.5% at 5.5 GHz and 20% at 9 GHz in Obs. 2. The mid-IR, near-IR, and optical observations suggest the presence of a compact jet that peaks in the mid- or far-IR. The X-ray polarization degree was found to be 3.7%±0.4% (at 90% confidence level) during Obs. 1 when the source was in the horizontal branch of the Z-track and 1.8%±0.4% during Obs. 2 when the source was in the normal-flaring branch. These results confirm the variation in polarization degree as a function of the position of the source in the color-color diagram, as for previously observed Z-track sources (Cyg X-2 and XTE 1701−462). Evidence of a variation in the polarization angle of ∼20° with energy is found in both observations, likely related to the different, nonorthogonal polarization angles of the disk and Comptonization components, which peak at different energies
    corecore