7 research outputs found

    Language Development in Preschool Duchenne Muscular Dystrophy Boys

    Get PDF
    Background: the present study aims to assess language in preschool-aged Duchenne muscular dystrophy (DMD) boys with normal cognitive quotients, and to establish whether language difficulties are related to attentional aspects or to the involvement of brain dystrophin isoforms. Methods: 20 children aged between 48 and 72 months were assessed with language and attention assessments for preschool children. Nine had a mutation upstream of exon 44, five between 44 and 51, four between 51 and 63, and two after exon 63. A control group comprising 20 age-matched boys with a speech language disorder and normal IQ were also used. Results: lexical and syntactic comprehension and denomination were normal in 90% of the boys with Duchenne, while the articulation and repetition of long words, and sentence repetition frequently showed abnormal results (80%). Abnormal results were also found in tests assessing selective and sustained auditory attention. Language difficulties were less frequent in patients with mutations not involving isoforms Dp140 and Dp71. The profile in Duchenne boys was different form the one observed in SLI with no cognitive impairment. Conclusion: The results of our observational cross-sectional study suggest that early language abilities are frequently abnormal in preschool Duchenne boys and should be assessed regardless of their global neurodevelopmental quotient

    Hereditary Hyperekplexia: A New Family and a Systematic Review of GLRA1 Gene-Related Phenotypes

    No full text
    Hereditary hyperekplexia (HPX) is a genetic neurodevelopmental disorder recently defined by the triad of (1) neonatal hypertonia, (2) excessive startle reflexes, and (3) generalized stiffness following the startle. Defects in GLRA1 are the most common cause of HPX, inherited both in an autosomal dominant and autosomal recessive manner. GLRA1 mutations can also cause milder phenotypes in the startle syndromes spectrum, but the prevalence is uncertain and no clear genotype-phenotype correlation has emerged yet. Moreover, the prevalence of neurodevelopmental outcomes has not been clearly defined. Here we report a new family of patients with a typical HPX phenotype, linked to a novel GLRA1 mutation, inherited with a recessive pattern. We then perform a systematic review of the literature of GLRA1related HPX, describing the main epidemiological features of 210 patients. We found that GLRA1-related phenotypes do not necessarily fulfill the current criteria for HPX, including also milder and later-onset phenotypes. Among clinical features of the disease, neurodevelopmental issues were reported in a third of the sample; interestingly, we found that these problems, particularly when severe, were more common in homozygous than in heterozygous patients. Additional clinical and preclinical studies are needed to define predictors of adverse neurodevelopmental outcomes and underlying mechanisms.(c) 2022 Elsevier Inc. All rights reserved

    A Longitudinal Follow-Up Study of Intellectual Function in Duchenne Muscular Dystrophy over Age: Is It Really Stable?

    Get PDF
    The aim of the study was to retrospectively evaluate the consistency of longitudinal findings on intellectual functioning in DMD boys and their relationship to behavioral and neuropsychiatric difficulties. The cohort included 70 patients of age 3 to 17 years with at least two assessments using the Wechsler scales. CBCL and clinical observation of behavior were also performed. Changes in total intelligence quotient were interpreted as stable or not stable using the reliable-change method. On the first assessment 43/70 had normal quotients, 18 borderline, 5 mild, and 4 moderate intellectual disability, while 27/70 had no behavioral disorders, 17 had abnormal CBCL, and 26 patients had clear signs of attention deficits despite normal CBCL. The remaining seven were untestable. The mean total intelligence quotient change in the cohort was −2.99 points (SD: 12.29). Stable results on TIQ were found in 63% of the paired assessments. A third of the consecutive cognitive assessments showed a difference of more than 11 points with changes up to 42 points. Boys with no behavioral/attention disorder had smaller changes than those with attention (p = 0.007) and behavioral disorders (p = 0.002). Changes in IQ may occur in Duchenne and are likely to be associated with behavioral or attention deficits

    Longitudinal Analysis of PUL 2.0 Domains in Ambulant and Non-Ambulant Duchenne Muscular Dystrophy Patients: How do they Change in Relation to Functional Ability?

    No full text
    Background: The performance of upper limb 2.0 (PUL) is widely used to assess upper limb function in DMD patients. The aim of the study was to assess 24 month PUL changes in a large cohort of DMD patients and to establish whether domains changes occur more frequently in specific functional subgroups. Methods: The PUL was performed in 311 patients who had at least one pair of assessments at 24 months, for a total of 808 paired assessments. Ambulant patients were subdivided according to the ability to walk: >350, 250-350, ≤250 meters. Non ambulant patients were subdivided according to the time since they lost ambulation: <1, 1-2, 2-5 or >5 years. Results: At 12 months, the mean PUL 2.0 change on all the paired assessments was -1.30 (-1.51--1.05) for the total score, -0.5 (-0.66--0.39) for the shoulder domain, -0.6 (-0.74--0.5) for the elbow domain and -0.1 (-0.20--0.06) for the distal domain.At 24 months, the mean PUL 2.0 change on all the paired assessments was -2.9 (-3.29--2.60) for the total score, -1.30 (-1.47--1.09) for the shoulder domain, -1.30 (-1.45--1.11) for the elbow domain and -0.4 (-1.48--1.29) for the distal domain.Changes at 12 and 24 months were statistically significant between subgroups with different functional abilities for the total score and each domain (p <  0.001). Conclusion: There were different patterns of changes among the functional subgroups in the individual domains. The time of transition, including the year before and after loss of ambulation, show the peak of negative changes in PUL total scores that reflect not only loss of shoulder but also of elbow activities. These results suggest that patterns of changes should be considered at the time of designing clinical trials

    Age, corticosteroid treatment and site of mutations affect motor functional changes in young boys with Duchenne Muscular Dystrophy

    No full text
    The aim of this study was to establish the possible effect of age, corticosteroid treatment and brain dystrophin involvement on motor function in young boys affected by Duchenne Muscular Dystrophy who were assessed using the North Star Ambulatory Assessment between the age of 4 and 7 years. The study includes 951 North Star assessments from 226 patients. Patients were subdivided according to age, to the site of mutation and therefore to the involvement of different brain dystrophin isoforms and to corticosteroids duration. There was a difference in the maximum North Star score achieved among patients with different brain dystrophin isoforms (p = 0.007). Patients with the involvement of Dp427, Dp140 and Dp71, had lower maximum NSAA scores when compared to those with involvement of Dp427 and Dp140 or of Dp427 only. The difference in the age when the maximum score was achieved in the different subgroups did not reach statistical significance. Using a linear regression model on all assessments we found that each of the three variables, age, site of mutation and corticosteroid treatment had an influence on the NSAA values and their progression over time. A second analysis, looking at 12-month changes showed that within this time interval the magnitude of changes was related to corticosteroid treatment but not to site of mutation. Our findings suggest that each of the considered variables appear to play a role in the progression of North Star scores in patients between the age of 4 and 7 years and that these should be carefully considered in the trial design of boys in this age range

    Longitudinal Analysis of PUL 2.0 Domains in Ambulant and Non-Ambulant Duchenne Muscular Dystrophy Patients: How do they Change in Relation to Functional Ability?

    No full text
    Background: The performance of upper limb 2.0 (PUL) is widely used to assess upper limb function in DMD patients. The aim of the study was to assess 24 month PUL changes in a large cohort of DMD patients and to establish whether domains changes occur more frequently in specific functional subgroups. Methods: The PUL was performed in 311 patients who had at least one pair of assessments at 24 months, for a total of 808 paired assessments. Ambulant patients were subdivided according to the ability to walk: >350, 250-350, =250 meters. Non ambulant patients were subdivided according to the time since they lost ambulation: 5 years. Results: At 12 months, the mean PUL 2.0 change on all the paired assessments was -1.30 (-1.51-1.05) for the total score, -0.5 (-0.66-0.39) for the shoulder domain, -0.6 (-0.74-0.5) for the elbow domain and -0.1 (-0.20-0.06) for the distal domain. At 24 months, the mean PUL 2.0 change on all the paired assessments was -2.9 (-3.29-2.60) for the total score, -1.30 (-1.47-1.09) for the shoulder domain, -1.30 (-1.45-1.11) for the elbow domain and -0.4 (-1.48--1.29) for the distal domain. Changes at 12 and 24 months were statistically significant between subgroups with different functional abilities for the total score and each domain (p < 0.001). Conclusion: There were different patterns of changes among the functional subgroups in the individual domains. The time of transition, including the year before and after loss of ambulation, show the peak of negative changes in PUL total scores that reflect not only loss of shoulder but also of elbow activities. These results suggest that patterns of changes should be considered at the time of designing clinical trials
    corecore