17 research outputs found
The physics models of FLUKA: status and recent development
A description of the intermediate and high energy hadronic interaction models
used in the FLUKA code is given. Benchmarking against experimental data is also
reported in order to validate the model performances. Finally the most recent
developments and perspectives for nucleus-nucleus interactions are described
together with some comparisons with experimental data.Comment: talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 10 pages, p
Charm Production in DPMJET
In this work, charm production in the {\sc dpmjet} hadronic jet simulation is
compared to experimental data. Since the major application of {\sc dpmjet} is
the simulation of cosmic ray-induced air showers, the version of the code
integrated in the CORSIKA simulation package has been used for the comparison.
Wherever necessary, adjustments have been made to improve agreement between
simulation and data. With the availability of new muon/neutrino detectors that
combine a large fiducial volume with large amounts of shielding, investigation
of prompt muons and neutrinos from cosmic ray interactions will be feasible for
the first time. Furthermore, above TeV charmed particle decay
becomes the dominant background for diffuse extraterrestrial neutrino flux
searches. A reliable method to simulate charm production in high-energy
proton-nucleon interactions is therefore required.Comment: 10 pages, to be published in JCA
The FLUKA code: present applications and future developments
The main features of the FLUKA Monte Carlo code, which can deal with
transport and interaction of electromagnetic and hadronic particles, are
summarised. The physical models embedded in FLUKA are mentioned, as well as
examples of benchmarking against experimental data. A short history of the code
is provided and the following examples of applications are discussed in detail:
prediction of calorimetric performances, atmospheric neutrino flux
calculations, dosimetry in atmosphere and radiobiology applications, including
hadrontherapy and space radiation protection. Finally a few lines are dedicated
to the FLUKA server, from which the code can be downloaded.Comment: talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 8 pages, pd
Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration
NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics
A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations
An essential component in proton radiotherapy is the algorithm to calculate
the radiation dose to be delivered to the patient. The most common dose
algorithms are fast but they are approximate analytical approaches. However
their level of accuracy is not always satisfactory, especially for
heterogeneous anatomic areas, like the thorax. Monte Carlo techniques provide
superior accuracy, however, they often require large computation resources,
which render them impractical for routine clinical use. Track-repeating
algorithms, for example the Fast Dose Calculator, have shown promise for
achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose
calculations in a fraction of the computation time. We report on the
implementation of the Fast Dose Calculator for proton radiotherapy on a card
equipped with graphics processor units (GPU) rather than a central processing
unit architecture. This implementation reproduces the full Monte Carlo and
CPU-based track-repeating dose calculations within 2%, while achieving a
statistical uncertainty of 2% in less than one minute utilizing one single GPU
card, which should allow real-time accurate dose calculations
Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons
Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena ( I similar to 3-5 x 10(19) W cm(-2)) produced hard bremsstrahlung photons ( kT similar to 2(9 MeV) via a laser-gas interaction which served to induce ( gamma, p) and ( gamma, n) reactions in Mg, Ti, Zn and Mo isotopes. Several ( gamma, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields
Recommended from our members
FLUKA: A Multi-Particle Transport Code
This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography