16 research outputs found

    Étude de la régulation de l'expression du gène de la périphérine au cours de la différenciation neuronale

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal

    A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent development in the field of COPD has focused on strategies aimed at reducing the underlying inflammation through selective inhibition of the phosphodiesterase type IV (PDE4) isoform. Although the anti-inflammatory and bronchodilator activity of selective PDE4 inhibitors has been well documented, their low therapeutic ratio and dose-dependent systemic side effects have limited their clinical utility. This study examined the effect of 2'-deoxy-2'-Fluoro-β-D-Arabinonucleic Acid (FANA)-containing antisense oligonucleotides (AON) targeting the mRNA for the PDE4B/4D and 7A subtypes on lung inflammatory markers, both <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>Normal human bronchial epithelial (NHBE) cells were transfected with FANA AON against PDE4B/4D and 7A alone or in combination. mRNA levels for target PDE subtypes, as well as secretion of pro-inflammatory chemokines were then measured following cell stimulation. Mice were treated with combined PDE4B/4D and 7A AON via endo-tracheal delivery, or with roflumilast via oral delivery, and exposed to cigarette smoke for one week. Target mRNA inhibition, as well as influx of inflammatory cells and mediators were measured in lung lavages. A two-week smoke exposure protocol was also used to test the longer term potency of PDE4B/4D and 7A AONs.</p> <p>Results</p> <p>In NHBE cells, PDE4B/4D and 7A AONs dose-dependently and specifically inhibited expression of their respective target mRNA. When used in combination, PDE4B/4D and 7A AONs significantly abrogated the cytokine-induced secretion of IL-8 and MCP-1 to near baseline levels. In mice treated with combined PDE4B/4D and 7A AONs and exposed to cigarette smoke, significant protection against the smoke-induced recruitment of neutrophils and production of KC and pro-MMP-9 was obtained, which was correlated with inhibition of target mRNA in cells from lung lavages. In this model, PDE AONs exerted more potent and broader anti-inflammatory effects against smoke-induced lung inflammation than roflumilast. Moreover, the protective effect of PDE4B/4D and 7A AON was maintained when a once-weekly treatment schedule was used.</p> <p>Conclusion</p> <p>These results indicate that inhaled AON against PDE4B/4D and 7A have unique effects on biomarkers that are believed to be important in the pathophysiology of COPD, which supports further development as a potential therapy in this disease.</p

    Improvements in siRNA properties mediated by 2 0-deoxy-2 0-fluoro-b-D-arabinonucleic acid (FANA)

    No full text
    RNA interference (RNAi) has emerged recently as an efficient mechanism for specific gene silencing. Short double-stranded small interfering RNAs (siRNAs) are now widely used for cellular or drug target validation; however, their use for silencing clinically relevant genes in a therapeutic setting remains problematic because of their unfavourable metabolic stability and pharmacokinetic properties. To address some of these concerns, we have investigated the properties of siRNA modified with 2 0-deoxy-2 0-fluoro-b-D-arabinonucleotide units (araF-N or FANA units). Here we provide evidence that these modified siRNAs are compatible with the intracellular RNAi machinery and can mediate specific degradation of target mRNA. We also show that the incorporation of FANA units into siRNA duplexes increases activity and substantially enhances serum stability of the siRNA. A fully modified sense 2 0-deoxy-2 0-fluoro-b-D-arabinonucleic acid (FANA) strand when hybridized to an antisense RNA (i.e. FANA/RNA hybrid) was shown to be 4-fold more potent and had longer half-life in serum ( 6 h) compared with an unmodified siRNA (&lt;15 min). While incorporation of FANA units is well tolerated throughout the sense strand of the duplex, modifications can also be included at the 5 0 or 3 0 ends of the antisense strand, in striking contrast to other commonly used chemical modifications. Taken together, these results offer preliminary evidence of the therapeutic potential of FANA modified siRNAs

    TPI 1020, a novel anti-inflammatory, nitric oxide donating compound, potentiates the bronchodilator effects of salbutamol in conscious guinea-pigs

    No full text
    Inhaled corticosteroids are regularly co-administered with β2-adrenoceptor agonists. This study evaluates in conscious guinea-pigs the bronchodilator effect, alone or combined with salbutamol, of TPI 1020, a novel anti-inflammatory corticosteroid and nitric oxide (NO) donor derived from budesonide. Guinea-pigs received inhaled histamine (3 mM) and specific airway conductance (sGaw) measured. Responses to histamine were measured before and on the next day 15 min after a 15 min inhalation of vehicle, salbutamol, TPI 1020, budesonide, the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP), or combinations of these drugs. Salbutamol and TPI 1020 caused concentration-dependent bronchodilatation measured as inhibition of histamine-induced bronchoconstriction. TPI 1020-induced bronchodilatation was blocked by the guanylyl cyclise inhibitor, ODQ, indicating cGMP-dependence through released NO. While salbutamol at 80 μM did not exert significant bronchodilatation, significant inhibitions were observed when co-administered with TPI 1020, 0.11 and 0.33 mM. The combined effects of TPI 1020 and salbutamol lasted significantly longer than either drug alone. Inhaled budesonide was a weak bronchodilator and when co-administered with salbutamol there was enhanced bronchodilatation. Addition of the NO-donor, SNAP (0.1 mM), to the budesonide/salbutamol combination, also improved the inhibition of histamine-induced bronchoconstriction. This study has shown that TPI 1020 potentiates the bronchodilator activity of salbutamol, and their combination lasted longer than either drug administered individually. Both the corticosteroid and NO-releasing activities of TPI 1020 appear to be required for the potentiation of salbutamol. Combination of TPI 1020 with a β2-adrenoceptor agonist may therefore be useful against acute bronchoconstriction episodes in asthma, and may offer an opportunity for reducing doses of inhaled β2-adrenoceptor agonists

    Bronchoprotection in conscious guinea pigs by budesonide and the NO-donating analogue, TPI 1020, alone and combined with tiotropium or formoterol

    No full text
    BACKGROUND AND PURPOSE Inhaled corticosteroids, anticholinergics and β2-adrenoceptor agonists are frequently combined for treating chronic respiratory diseases. We examine the corticosteroid, budesonide, and novel NO-donating derivative, TPI 1020, against histamine- and methacholine-induced bronchoconstriction and whether they enhance the β2-adrenoceptor agonist formoterol or muscarinic antagonist tiotropium in conscious guinea pigs. EXPERIMENTAL APPROACH Dunkin-Hartley guinea pigs received inhaled histamine (3 mM) or methacholine (1.5 mM) and specific airway conductance (sGaw) was measured before and 15 or 75 min after treatment with budesonide, TPI 1020, tiotropium or formoterol alone or in combinations. KEY RESULTS Formoterol (0.7–10 µM) and budesonide (0.11–0.7 mM) inhibited histamine-induced bronchoconstriction and tiotropium (2–20 µM) inhibited methacholine-induced bronchoconstriction by up to 70.8 ± 16.6%, 34.9 ± 4.4% and 85.1 ± 14.3%, respectively. Formoterol (2.5 µM) or tiotropium (2 µM) alone exerted small non-significant bronchoprotection. However, when co-administered with TPI 1020 0.11 mM, which alone had no significant effect, there was significant inhibition of the bronchoconstriction (45.7 ± 12.2% and 79.7 ± 21.4%, respectively). Co-administering budesonide (0.11 mM) with tiotropium (2 µM), which alone had no effect, also significantly inhibited the methacholine bronchoconstriction (36.5 ± 13.0%), but there was no potentiation of formoterol against histamine. The NO scavenger, CPTIO, prevented the bronchoprotection by SNAPand TPI 1020. CONCLUSIONS AND IMPLICATIONS TPI 1020 potentiated the bronchoprotection by formoterol and tiotropium. Budesonide also enhanced the effects of tiotropium but not formoterol. Combination of TPI 1020 with a long-acting β2-adrenoceptor agonist or muscarinic receptor antagonist may therefore be a more potent therapeutic approach for treatment of chronic respiratory diseases
    corecore