4 research outputs found

    Myeloid Heme Oxygenase-1 Regulates the Acute Inflammatory Response to Zymosan in the Mouse Air Pouch

    Get PDF
    [EN] Heme oxygenase-1 (HO-1) is induced by many stimuli to modulate the activation and function of different cell types during innate immune responses. Although HO-1 has shown anti-inflammatory effects in different systems, there are few data on the contribution of myeloid HO-1 and its role in inflammatory processes is not well understood. To address this point, we have used HO-1(M-KO) mice with myeloid-restricted deletion of HO-1 to specifically investigate its influence on the acute inflammatory response to zymosan in vivo. In the mouse air pouch model, we have shown an exacerbated inflammation in HO-1(M-KO) mice with increased neutrophil infiltration accompanied by high levels of inflammatory mediators such as interleukin-1 beta, tumor necrosis factor-a, and prostaglandin E-2. The expression of the degradative enzyme matrix metalloproteinase-3 (MMP-3) was also enhanced. In addition, we observed higher levels of serum MMP-3 in HO-1(M-KO) mice compared with control mice, suggesting the presence of systemic inflammation. Altogether, these findings demonstrate that myeloid HO-1 plays an anti-inflammatory role in the acute response to zymosan in vivo and suggest the interest of this target to regulate inflammatory processes.This work has been funded by grants SAF2010-22048, SAF2013-4874R (MINECO, FEDER), PROMETEO/2010/047, and PROMETEOII/2014/071 (Generalitat Valenciana).Brines, R.; Catalán, L.; Alcaraz Tormo, MJ.; Ferrandiz Manglano, ML. (2018). Myeloid Heme Oxygenase-1 Regulates the Acute Inflammatory Response to Zymosan in the Mouse Air Pouch. Oxidative Medicine and Cellular Longevity. 2018. https://doi.org/10.1155/2018/5053091S2018Grochot-Przeczek, A., Dulak, J., & Jozkowicz, A. (2011). Haem oxygenase-1: non-canonical roles in physiology and pathology. Clinical Science, 122(3), 93-103. doi:10.1042/cs20110147Busserolles, J., Megías, J., Terencio, M. C., & Alcaraz, M. J. (2006). Heme oxygenase-1 inhibits apoptosis in Caco-2 cells via activation of Akt pathway. The International Journal of Biochemistry & Cell Biology, 38(9), 1510-1517. doi:10.1016/j.biocel.2006.03.013Devesa, I., Ferrándiz, M. L., Terencio, M. C., Joosten, L. A. B., van den Berg, W. B., & Alcaraz, M. J. (2005). Influence of heme oxygenase 1 modulation on the progression of murine collagen-induced arthritis. Arthritis & Rheumatism, 52(10), 3230-3238. doi:10.1002/art.21356García-Arnandis, I., Guillén, M. I., Castejón, M. A., Gomar, F., & Alcaraz, M. J. (2010). Haem oxygenase-1 down-regulates high mobility group box 1 and matrix metalloproteinases in osteoarthritic synoviocytes. Rheumatology, 49(5), 854-861. doi:10.1093/rheumatology/kep463Clérigues, V., Guillén, M. I., Castejón, M. A., Gomar, F., Mirabet, V., & Alcaraz, M. J. (2012). Heme oxygenase-1 mediates protective effects on inflammatory, catabolic and senescence responses induced by interleukin-1β in osteoarthritic osteoblasts. Biochemical Pharmacology, 83(3), 395-405. doi:10.1016/j.bcp.2011.11.024Gozzelino, R., Jeney, V., & Soares, M. P. (2010). Mechanisms of Cell Protection by Heme Oxygenase-1. Annual Review of Pharmacology and Toxicology, 50(1), 323-354. doi:10.1146/annurev.pharmtox.010909.105600Naito, Y., Takagi, T., & Higashimura, Y. (2014). Heme oxygenase-1 and anti-inflammatory M2 macrophages. Archives of Biochemistry and Biophysics, 564, 83-88. doi:10.1016/j.abb.2014.09.005Orozco, L. D., Kapturczak, M. H., Barajas, B., Wang, X., Weinstein, M. M., Wong, J., … Araujo, J. A. (2007). Heme Oxygenase-1 Expression in Macrophages Plays a Beneficial Role in Atherosclerosis. Circulation Research, 100(12), 1703-1711. doi:10.1161/circresaha.107.151720Perrella, M., & Yet, S.-F. (2003). Role of Heme Oxygenase-1 in Cardiovascular Function. Current Pharmaceutical Design, 9(30), 2479-2487. doi:10.2174/1381612033453776Abraham, N. G., Li, M., Vanella, L., Peterson, S. J., Ikehara, S., & Asprinio, D. (2008). Bone marrow stem cell transplant into intra-bone cavity prevents type 2 diabetes: Role of heme oxygenase-adiponectin. Journal of Autoimmunity, 30(3), 128-135. doi:10.1016/j.jaut.2007.12.005Naito, Y., Takagi, T., & Yoshikawa, T. (2004). Heme oxygenase-1: a new therapeutic target for inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, 20, 177-184. doi:10.1111/j.1365-2036.2004.01992.xBrines, R., Maicas, N., Ferrándiz, M. L., Loboda, A., Jozkowicz, A., Dulak, J., & Alcaraz, M. J. (2012). Heme Oxygenase-1 Regulates the Progression of K/BxN Serum Transfer Arthritis. PLoS ONE, 7(12), e52435. doi:10.1371/journal.pone.0052435Poss, K. D., & Tonegawa, S. (1997). Heme oxygenase 1 is required for mammalian iron reutilization. Proceedings of the National Academy of Sciences, 94(20), 10919-10924. doi:10.1073/pnas.94.20.10919Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., … Koizumi, S. (1999). Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. Journal of Clinical Investigation, 103(1), 129-135. doi:10.1172/jci4165Radhakrishnan, N., Yadav, S. P., Sachdeva, A., Pruthi, P. K., Sawhney, S., Piplani, T., … Yachie, A. (2011). Human Heme Oxygenase-1 Deficiency Presenting With Hemolysis, Nephritis, and Asplenia. Journal of Pediatric Hematology/Oncology, 33(1), 74-78. doi:10.1097/mph.0b013e3181fd2aaeTzima, S., Victoratos, P., Kranidioti, K., Alexiou, M., & Kollias, G. (2009). Myeloid heme oxygenase–1 regulates innate immunity and autoimmunity by modulating IFN-β production. Journal of Experimental Medicine, 206(5), 1167-1179. doi:10.1084/jem.20081582Rossi, M., Thierry, A., Delbauve, S., Preyat, N., Soares, M. P., Roumeguère, T., … Hougardy, J.-M. (2017). Specific expression of heme oxygenase-1 by myeloid cells modulates renal ischemia-reperfusion injury. Scientific Reports, 7(1). doi:10.1038/s41598-017-00220-wJais, A., Einwallner, E., Sharif, O., Gossens, K., Lu, T. T.-H., Soyal, S. M., … Esterbauer, H. (2014). Heme Oxygenase-1 Drives Metaflammation and Insulin Resistance in Mouse and Man. Cell, 158(1), 25-40. doi:10.1016/j.cell.2014.04.043Konrad, F. M., Knausberg, U., Höne, R., Ngamsri, K.-C., & Reutershan, J. (2015). Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation. Mucosal Immunology, 9(1), 98-111. doi:10.1038/mi.2015.39Underhill, D. M. (2003). Macrophage recognition of zymosan particles. Journal of Endotoxin Research, 9(3), 176-180. doi:10.1177/09680519030090030601MORONEY, M.-A., ALCARAZ, M. J., FORDER, R. A., CAREY, F., & HOULT, J. R. S. (1988). Selectivity of Neutrophil 5-Lipoxygenase and Cyclo-oxygenase Inhibition by an Anti-inflammatory Flavonoid Glycoside and Related Aglycone Flavonoids. Journal of Pharmacy and Pharmacology, 40(11), 787-792. doi:10.1111/j.2042-7158.1988.tb05173.xClausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R., & Förster, I. (1999). Transgenic Research, 8(4), 265-277. doi:10.1023/a:1008942828960Posadas, I., Terencio, M. C., Guillén, I., Ferrándiz, M. L., Coloma, J., Payá, M., & Alcaraz, M. J. (2000). Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunyn-Schmiedeberg’s Archives of Pharmacology, 361(1), 98-106. doi:10.1007/s002109900150Vicente, A. M., Guillén, M. I., Habib, A., & Alcaraz, M. J. (2003). Beneficial Effects of Heme Oxygenase-1 Up-Regulation in the Development of Experimental Inflammation Induced by Zymosan. Journal of Pharmacology and Experimental Therapeutics, 307(3), 1030-1037. doi:10.1124/jpet.103.057992Galli, S. J., Borregaard, N., & Wynn, T. A. (2011). Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nature Immunology, 12(11), 1035-1044. doi:10.1038/ni.2109Chung, S. W., Liu, X., Macias, A. A., Baron, R. M., & Perrella, M. A. (2008). Heme oxygenase-1–derived carbon monoxide enhances the host defense response to microbial sepsis in mice. Journal of Clinical Investigation, 118(1), 239-247. doi:10.1172/jci32730Chiang, N., Shinohara, M., Dalli, J., Mirakaj, V., Kibi, M., Choi, A. M. K., & Serhan, C. N. (2013). Inhaled Carbon Monoxide Accelerates Resolution of Inflammation via Unique Proresolving Mediator–Heme Oxygenase-1 Circuits. The Journal of Immunology, 190(12), 6378-6388. doi:10.4049/jimmunol.1202969Murphy, G., Cockett, M. I., Stephens, P. E., Smith, B. J., & Docherty, A. J. P. (1987). Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes. Biochemical Journal, 248(1), 265-268. doi:10.1042/bj2480265Steenport, M., Khan, K. M. F., Du, B., Barnhard, S. E., Dannenberg, A. J., & Falcone, D. J. (2009). Matrix Metalloproteinase (MMP)-1 and MMP-3 Induce Macrophage MMP-9: Evidence for the Role of TNF-α and Cyclooxygenase-2. The Journal of Immunology, 183(12), 8119-8127. doi:10.4049/jimmunol.0901925Blom, A. B., van Lent, P. L., Libregts, S., Holthuysen, A. E., van der Kraan, P. M., van Rooijen, N., & van den Berg, W. B. (2006). Crucial role of macrophages in matrix metalloproteinase–mediated cartilage destruction during experimental osteoarthritis : Involvement of matrix metalloproteinase 3. Arthritis & Rheumatism, 56(1), 147-157. doi:10.1002/art.22337Houseman, M., Potter, C., Marshall, N., Lakey, R., Cawston, T., Griffiths, I., … Isaacs, J. D. (2012). Baseline serum MMP-3 levels in patients with Rheumatoid Arthritis are still independently predictive of radiographic progression in a longitudinal observational cohort at 8 years follow up. Arthritis Research & Therapy, 14(1), R30. doi:10.1186/ar3734Green, M. J. (2003). Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology, 42(1), 83-88. doi:10.1093/rheumatology/keg03

    Nrf2 as a therapeutic target for rheumatic diseases

    Full text link
    [EN] Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of cellular protective processes. Rheumatic diseases are chronic conditions characterized by inflammation, pain, tissue damage and limitations in function. Main examples are rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis and osteoporosis. Their high prevalence constitutes a major health problem with an important social and economic impact. A wide range of evidence indicates that Nrf2 may control different mechanisms involved in the physiopathology of rheumatic conditions. Therefore, the appropriate expression and balance of Nrf2 is necessary for regulation of oxidative stress, inflammation, immune responses, and cartilage and bone metabolism. Numerous studies have demonstrated that Nrf2 deficiency aggravates the disease in experimental models while Nrf2 activation results in immunoregulatory and anti-inflammatory effects. These reports reinforce the increasing interest in the pharmacologic regulation of Nrf2 and its potential applications. Nevertheless, a majority of Nrf2 inducers are electrophilic molecules which may present off-target effects. In recent years, novel strategies have been sought to modulate the Nrf2 pathway which has emerged as a therapeutic target in rheumatic conditions.This work has been funded by grant SAF2017-85806-R (MINECO, FEDER, Spain).Ferrandiz Manglano, ML.; Nacher-Juan, J.; Alcaraz Tormo, MJ. (2018). Nrf2 as a therapeutic target for rheumatic diseases. Biochemical Pharmacology. 152:338-346. https://doi.org/10.1016/j.bcp.2018.04.010S33834615

    Osteostatin Inhibits Collagen-Induced Arthritis by Regulation of Immune Activation, Pro-Inflammatory Cytokines, and Osteoclastogenesis

    Full text link
    [EN] In chronic inflammatory joint diseases, such as rheumatoid arthritis, there is an important bone loss. Parathyroid hormone-related protein (PTHrP) and related peptides have shown osteoinductive properties in bone regeneration models, but there are no data on inflammatory joint destruction. We have investigated whether the PTHrP (107-111) C-terminal peptide (osteostatin) could control the development of collagen-induced arthritis in mice. Administration of osteostatin (80 or 120 mu g/kg s.c.) after the onset of disease decreased the severity of arthritis as well as cartilage and bone degradation. This peptide reduced serum IgG2a levels as well as T cell activation, with the downregulation of ROR gamma t+CD4+ T cells and upregulation of FoxP3+CD8+ T cells in lymph nodes. The levels of key cytokines, such as interleukin(IL)-1 beta, IL-2, IL-6, IL-17, and tumor necrosis factor-alpha in mice paws were decreased by osteostatin treatment, whereas IL-10 was enhanced. Bone protection was related to reductions in receptor activator of nuclear factor-kappa B ligand, Dickkopf-related protein 1, and joint osteoclast area. Osteostatin improves arthritis and controls bone loss by inhibiting immune activation, pro-inflammatory cytokines, and osteoclastogenesis. Our results support the interest of osteostatin for the treatment of inflammatory joint conditions.This work has been funded by grant SAF2017-85806-R (Ministerio de Ciencia, Innovación y Universidades, Spain, FEDER). J. Nácher-Juan thanks Universitat de València, Spain, for a PhD fellowship (INV18-01-13-01).Nacher-Juan, J.; Terencio Silvestre, MC.; Alcaraz Tormo, MJ.; Ferrandiz Manglano, ML. (2019). Osteostatin Inhibits Collagen-Induced Arthritis by Regulation of Immune Activation, Pro-Inflammatory Cytokines, and Osteoclastogenesis. International Journal of Molecular Sciences. 20(16):1-18. https://doi.org/10.3390/ijms20163845S1182016De Gortázar, A. R., Alonso, V., Alvarez-Arroyo, M. V., & Esbrit, P. (2006). Transient Exposure to PTHrP (107-139) Exerts Anabolic Effects through Vascular Endothelial Growth Factor Receptor 2 in Human Osteoblastic Cells In Vitro. Calcified Tissue International, 79(5), 360-369. doi:10.1007/s00223-006-0099-yTrejo, C. G., Lozano, D., Manzano, M., Doadrio, J. C., Salinas, A. J., Dapía, S., … Buján, J. (2010). The osteoinductive properties of mesoporous silicate coated with osteostatin in a rabbit femur cavity defect model. Biomaterials, 31(33), 8564-8573. doi:10.1016/j.biomaterials.2010.07.103Fenton, A. J., Martin, T. J., & Nicholson, G. C. (2009). Carboxyl-terminal parathyroid hormone-related protein inhibits bone resorption by isolated chicken osteoclasts. Journal of Bone and Mineral Research, 9(4), 515-519. doi:10.1002/jbmr.5650090411Firestein, G. S., & McInnes, I. B. (2017). Immunopathogenesis of Rheumatoid Arthritis. Immunity, 46(2), 183-196. doi:10.1016/j.immuni.2017.02.006Scholtysek, C., Kronke, G., & Schett, G. (2012). Inflammation-Associated Changes in Bone Homeostasis. Inflammation & Allergy-Drug Targets, 11(3), 188-195. doi:10.2174/187152812800392706Szentpétery, Á., Horváth, Á., Gulyás, K., Pethö, Z., Bhattoa, H. P., Szántó, S., … Szekanecz, Z. (2017). Effects of targeted therapies on the bone in arthritides. Autoimmunity Reviews, 16(3), 313-320. doi:10.1016/j.autrev.2017.01.014Kohno, H., Shigeno, C., Kasai, R., Akiyama, H., Iida, H., Tsuboyama, T., … Nakamura, T. (1997). Synovial Fluids from Patients with Osteoarthritis and Rheumatoid Arthritis Contain High Levels of Parathyroid Hormone-Related Peptide. Journal of Bone and Mineral Research, 12(5), 847-854. doi:10.1359/jbmr.1997.12.5.847Fischer, J., Dickhut, A., Rickert, M., & Richter, W. (2010). Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis & Rheumatism, 62(9), 2696-2706. doi:10.1002/art.27565Chen, X., Macica, C. M., Nasiri, A., & Broadus, A. E. (2008). Regulation of articular chondrocyte proliferation and differentiation by indian hedgehog and parathyroid hormone-related protein in mice. Arthritis & Rheumatism, 58(12), 3788-3797. doi:10.1002/art.23985HORIUCHI, T., YOSHIDA, T., KOSHIHARA, Y., SAKAMOTO, H., KANAI, H., YAMAMOTO, S., & ITO, H. (1999). The Increase of Parathyroid Hormone-Related Peptide and Cytokine Levels in Synovial Fluid of Elderly Rheumatoid Arthritis and Osteoarthritis. Endocrine Journal, 46(5), 643-649. doi:10.1507/endocrj.46.643Platas, J., Guillén, M. I., Gomar, F., Castejón, M. A., Esbrit, P., & Alcaraz, M. J. (2016). Anti-senescence and Anti-inflammatory Effects of the C-terminal Moiety of PTHrP Peptides in OA Osteoblasts. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, glw100. doi:10.1093/gerona/glw100Myers, L. K., Rosloniec, E. F., Cremer, M. A., & Kang, A. H. (1997). Collagen-induced arthritis, an animal model of autoimmunity. Life Sciences, 61(19), 1861-1878. doi:10.1016/s0024-3205(97)00480-3Williams, P. J., Jones, R. H. V., & Rademacher, T. W. (1998). Correlation Between IgG Anti-Type II Collagen Levels and Arthritic Severity in Murine Arthritis. Autoimmunity, 27(4), 201-207. doi:10.3109/08916939808993831Watson, W. C., & Townes, A. S. (1985). Genetic susceptibility to murine collagen II autoimmune arthritis. Proposed relationship to the IgG2 autoantibody subclass response, complement C5, major histocompatibility complex (MHC) and non-MHC loci. Journal of Experimental Medicine, 162(6), 1878-1891. doi:10.1084/jem.162.6.1878Lories, R. J., Corr, M., & Lane, N. E. (2013). To Wnt or not to Wnt: the bone and joint health dilemma. Nature Reviews Rheumatology, 9(6), 328-339. doi:10.1038/nrrheum.2013.25Schett, G., & Teitelbaum, S. L. (2009). Osteoclasts and Arthritis. Journal of Bone and Mineral Research, 24(7), 1142-1146. doi:10.1359/jbmr.090533Cush, J. J., Splawski, J. B., Thomas, R., Mcfarlin, J. E., Schulze-Koops, H., Davis, L. S., … Lipsky, P. E. (1995). Elevated interleukin-10 levels in patients with rheumatoid arthritis. Arthritis & Rheumatism, 38(1), 96-104. doi:10.1002/art.1780380115Isomäki, P., Luukkainen, R., Saario, R., Toivanen, P., & Punnonen, J. (1996). Interleukin-10 functions as an antiinflammatory cytokine in rheumatoid synovium. Arthritis & Rheumatism, 39(3), 386-395. doi:10.1002/art.1780390306Finnegan, A., Kaplan, C. D., Cao, Y., Eibel, H., Glant, T. T., & Zhang, J. (2003). Arthritis Research & Therapy, 5(1), R18. doi:10.1186/ar601Rönnelid, J., Lysholm, J., Engström-Laurent, A., Klareskog, L., & Heyman, B. (1994). Local anti—type ii collagen antibody production in rheumatoid arthritis synovial fluid. Arthritis & Rheumatism, 37(7), 1023-1029. doi:10.1002/art.1780370707Croxford, A. M., Whittingham, S., McNaughton, D., Nandakumar, K. S., Holmdahl, R., & Rowley, M. J. (2013). Type II collagen-specific antibodies induce cartilage damage in mice independent of inflammation. Arthritis & Rheumatism, 65(3), 650-659. doi:10.1002/art.37805Nandakumar, K., Bäcklund, J., Vestberg, M., & Holmdahl, R. (2004). Arthritis Research & Therapy, 6(6), R544. doi:10.1186/ar1217Zhu, J., & Paul, W. E. (2010). Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunological Reviews, 238(1), 247-262. doi:10.1111/j.1600-065x.2010.00951.xLubberts, E. (2010). Th17 cytokines and arthritis. Seminars in Immunopathology, 32(1), 43-53. doi:10.1007/s00281-009-0189-9Ito, Y., Usui, T., Kobayashi, S., Iguchi-Hashimoto, M., Ito, H., Yoshitomi, H., … Mimori, T. (2009). Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis & Rheumatism, 60(8), 2294-2303. doi:10.1002/art.24687Lubberts, E., Koenders, M. I., Oppers-Walgreen, B., van den Bersselaar, L., Coenen-de Roo, C. J. J., Joosten, L. A. B., & van den Berg, W. B. (2004). Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis & Rheumatism, 50(2), 650-659. doi:10.1002/art.20001Koenders, M. I., Marijnissen, R. J., Devesa, I., Lubberts, E., Joosten, L. A. B., Roth, J., … van den Berg, W. B. (2011). Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin-1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: Rationale for combination treatment during arthritis. Arthritis & Rheumatism, 63(8), 2329-2339. doi:10.1002/art.30418Lubberts, E., van den Bersselaar, L., Oppers-Walgreen, B., Schwarzenberger, P., Coenen-de Roo, C. J. J., Kolls, J. K., … van den Berg, W. B. (2003). IL-17 Promotes Bone Erosion in Murine Collagen-Induced Arthritis Through Loss of the Receptor Activator of NF-κB Ligand/Osteoprotegerin Balance. The Journal of Immunology, 170(5), 2655-2662. doi:10.4049/jimmunol.170.5.2655Cools, N., Ponsaerts, P., Van Tendeloo, V. F. I., & Berneman, Z. N. (2007). Regulatory T Cells and Human Disease. Clinical and Developmental Immunology, 2007, 1-10. doi:10.1155/2007/89195Kelchtermans, H., Geboes, L., Mitera, T., Huskens, D., Leclercq, G., & Matthys, P. (2008). Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Annals of the Rheumatic Diseases, 68(5), 744-750. doi:10.1136/ard.2007.086066Notley, C. A., McCann, F. E., Inglis, J. J., & Williams, R. O. (2010). ANTI-CD3 therapy expands the numbers of CD4+ and CD8+ treg cells and induces sustained amelioration of collagen-induced arthritis. Arthritis & Rheumatism, 62(1), 171-178. doi:10.1002/art.25058Zaiss, M. M., Frey, B., Hess, A., Zwerina, J., Luther, J., Nimmerjahn, F., … David, J.-P. (2010). Regulatory T Cells Protect from Local and Systemic Bone Destruction in Arthritis. The Journal of Immunology, 184(12), 7238-7246. doi:10.4049/jimmunol.0903841Yu, Y., Ma, X., Gong, R., Zhu, J., Wei, L., & Yao, J. (2018). Recent advances in CD8+ regulatory T�cell research (Review). Oncology Letters. doi:10.3892/ol.2018.8378Nakagawa, T., Tsuruoka, M., Ogura, H., Okuyama, Y., Arima, Y., Hirano, T., & Murakami, M. (2009). IL-6 positively regulates Foxp3+CD8+ T cells in vivo. International Immunology, 22(2), 129-139. doi:10.1093/intimm/dxp119Filaci, G., Fenoglio, D., & Indiveri, F. (2010). CD8+T regulatory/suppressor cells and their relationships with autoreactivity and autoimmunity. Autoimmunity, 44(1), 51-57. doi:10.3109/08916931003782171Sun, J., Yang, Y., Huo, X., Zhu, B., Li, Z., Jiang, X., … Yang, J. (2019). Efficient Therapeutic Function and Mechanisms of Human Polyclonal CD8+CD103+Foxp3+ Regulatory T Cells on Collagen-Induced Arthritis in Mice. Journal of Immunology Research, 2019, 1-12. doi:10.1155/2019/8575407Stolina, M., Adamu, S., Ominsky, M., Dwyer, D., Asuncion, F., Geng, Z., … Kostenuik, P. J. (2005). RANKL is a Marker and Mediator of Local and Systemic Bone Loss in Two Rat Models of Inflammatory Arthritis. Journal of Bone and Mineral Research, 20(10), 1756-1765. doi:10.1359/jbmr.050601Nanes, M. S. (2003). Tumor necrosis factor-α: molecular and cellular mechanisms in skeletal pathology. Gene, 321, 1-15. doi:10.1016/s0378-1119(03)00841-2Diarra, D., Stolina, M., Polzer, K., Zwerina, J., Ominsky, M. S., Dwyer, D., … Schett, G. (2007). Dickkopf-1 is a master regulator of joint remodeling. Nature Medicine, 13(2), 156-163. doi:10.1038/nm1538Nakashima, T., Kobayashi, Y., Yamasaki, S., Kawakami, A., Eguchi, K., Sasaki, H., & Sakai, H. (2000). Protein Expression and Functional Difference of Membrane-Bound and Soluble Receptor Activator of NF-κB Ligand: Modulation of the Expression by Osteotropic Factors and Cytokines. Biochemical and Biophysical Research Communications, 275(3), 768-775. doi:10.1006/bbrc.2000.3379Sen, M. (2005). Wnt signalling in rheumatoid arthritis. Rheumatology, 44(6), 708-713. doi:10.1093/rheumatology/keh553Walsh, N. C., & Gravallese, E. M. (2010). Bone remodeling in rheumatic disease: a question of balance. Immunological Reviews, 233(1), 301-312. doi:10.1111/j.0105-2896.2009.00857.xBraun, T., & Zwerina, J. (2011). Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Research & Therapy, 13(4), 235. doi:10.1186/ar3380Kerschan-Schindl, K., Ebenbichler, G., Föeger-Samwald, U., Leiss, H., Gesslbauer, C., Herceg, M., … Pietschmann, P. (2018). Rheumatoid arthritis in remission. Wiener klinische Wochenschrift, 131(1-2), 1-7. doi:10.1007/s00508-018-1386-0Marenzana, M., Vugler, A., Moore, A., & Robinson, M. (2013). Effect of sclerostin-neutralising antibody on periarticular and systemic bone in a murine model of rheumatoid arthritis: a microCT study. Arthritis Research & Therapy, 15(5), R125. doi:10.1186/ar4305Wehmeyer, C., Frank, S., Beckmann, D., Böttcher, M., Cromme, C., König, U., … Dankbar, B. (2016). Sclerostin inhibition promotes TNF-dependent inflammatory joint destruction. Science Translational Medicine, 8(330), 330ra35-330ra35. doi:10.1126/scitranslmed.aac4351Ji, Y., Qiao, H., He, J., Li, W., Chen, R., Wang, J., … Chen, Z. (2017). Functional oligopeptide as a novel strategy for drug delivery. Journal of Drug Targeting, 25(7), 597-607. doi:10.1080/1061186x.2017.1309044Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biology, 8(6), e1000412. doi:10.1371/journal.pbio.1000412Maicas, N., Ibáñez, L., Alcaraz, M. J., Úbeda, A., & Ferrándiz, M. L. (2011). Prostaglandin D2 regulates joint inflammation and destruction in murine collagen-induced arthritis. Arthritis & Rheumatism, 64(1), 130-140. doi:10.1002/art.30656Payá, M., Terencio, M. C., Ferrándiz, M. L., & Alcaraz, M. J. (1996). Involvement of secretory phospholipase A2 activity in the zymosan rat air pouch model of inflammation. British Journal of Pharmacology, 117(8), 1773-1779. doi:10.1111/j.1476-5381.1996.tb15353.

    Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles

    Full text link
    [EN] Acute inflammation is a protective response of the body to harmful stimuli, such as pathogens or damaged cells. However, dysregulated inflammation can cause secondary damage and could thus contribute to the pathophysiology of many diseases. Inflammasomes, the macromolecular complexes responsible for caspase-1 activation, have emerged as key regulators of immune and inflammatory responses. Therefore, modulation of inflammasome activity has become an important therapeutic approach. Here we describe the design of a smart nanodevice that takes advantage of the passive targeting of nanoparticles to macrophages and enhances the therapeutic effect of caspase-1 inhibitor VX-765 in vivo. The functional hybrid systems consisted of MCM-41-based nanoparticles loaded with anti-inflammatory drug VX-765 (S2-P) and capped with poly-L-lysine, which acts as a molecular gate. S2-P activity has been evaluated in cellular and in vivo models of inflammation. The results indicated the potential advantage of using nanodevices to treat inflammatory diseases. (C) 2017 Elsevier B.V. All rights reserved.The authors wish to express their gratitude to the Spanish government (Projects MAT2015-64139-C4-1-R and SAF2014-52614-R (MINECO/FEDER)) and the Generalitat Valencia (Projects PROMETEOII/2014/061 and PROMETEOII/2014/047) for support. A.G-F. is grateful to the Spanish government for an FPU grant.García-Fernández, A.; García-Laínez, G.; Ferrandiz Manglano, ML.; Aznar, E.; Sancenón Galarza, F.; Alcaraz, MJ.; Murguía, JR.... (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release. 248:60-70. https://doi.org/10.1016/j.jconrel.2017.01.002S607024
    corecore